日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若函數(shù)f(x)=Asin(ωx+ϕ)+B(A>0,ω>0,0<ϕ<π)的圖象如右圖所示,則函數(shù)的解析式為f(x)=   
          【答案】分析:圖象中給出了半個周期的完整圖象,解出周期T,由公式求ω,又最高點與最低點的縱坐標的差為2,可得|A|=1進而求出A,b,到此函數(shù)解析式可以表示為 f(x)=sin(2x+ϕ)+1,將點 代入,即可求ϕ.得到函數(shù)的解析式.
          解答:解:由已知,如圖

          .易知 b=1
          ∴f(x)=sin(2x+ϕ)+1,
          將點 代入  f(x)=sin(2x+ϕ)+1得
          解得
          又0<ϕ<π,當k=1時,

          故答案為:
          點評:本題考點是三角函數(shù)的圖象與性質(zhì),考查知道了三角函數(shù)圖象上的特征求三角函數(shù)的解析式.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)的定義域為R,當x<0時f(x)>1,且對任意的實數(shù)x,y∈R,有f(x+y)=f(x)f(y).數(shù)列{an}滿足f(an+1)=
          1f(-2-an)
          (n∈N*
          (Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
          (Ⅱ)如果存在t、s∈N*,s≠t,使得點(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當n>M時,a n>f(0)恒成立?若存在,求出M的最小值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)的定義域為R,當x<0時f(x)>1,且對任意的實數(shù)x,y∈R,有f(x+y)=f(x)f(y).數(shù)列{an}滿足f(an+1)=
          1
          f(-2-an)
          (n∈N*)

          (Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
          (Ⅱ)如果存在t、s∈N*,s≠t,使得點(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當n>M時,an>0恒成立?若存在,求出M的最小值,若不存在,請說明理由;
          (Ⅲ)若a1=f(0),不等式
          1
          an+1
          +
          1
          an+2
          +…+
          1
          a2n
          12
          35
          (1+logf(1)x)
          對不小于2的正整數(shù)恒成立,求x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=
          3x-1
          x+1

          (1)已知s=-t+
          1
          2
          (t>1),求證:f(
          t-1
          t
          )=
          s+1
          s

          (2)證明:存在函數(shù)t=φ(s)=as+b(s>0),滿足f(
          s+1
          s
          )=
          t-1
          t
          ;
          (3)設(shè)x1=
          11
          17
          ,xn+1=f(xn),n=1,2,….問:數(shù)列{
          1
          xn-1
          }是否為等差數(shù)列?若是,求出數(shù)列{xn}中最大項的值;若不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省惠州一中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          設(shè)函數(shù)f(x)的定義域為R,當x<0時f(x)>1,且對任意的實數(shù)x,y∈R,有f(x+y)=f(x)f(y).數(shù)列{an}滿足f(an+1)=(n∈N*
          (Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
          (Ⅱ)如果存在t、s∈N*,s≠t,使得點(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當n>M時,a n>f(0)恒成立?若存在,求出M的最小值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省惠州一中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          設(shè)函數(shù)f(x)的定義域為R,當x<0時f(x)>1,且對任意的實數(shù)x,y∈R,有f(x+y)=f(x)f(y).數(shù)列{an}滿足
          (Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
          (Ⅱ)如果存在t、s∈N*,s≠t,使得點(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當n>M時,an>0恒成立?若存在,求出M的最小值,若不存在,請說明理由;
          (Ⅲ)若a1=f(0),不等式對不小于2的正整數(shù)恒成立,求x的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案