日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 對于函數(shù)f(x),若在定義域內(nèi)存在實數(shù)x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”.
          (Ⅰ)已知二次函數(shù)f(x)=ax2+2x-4a(a∈R),試判斷f(x)是否為“局部奇函數(shù)”?并說明理由;
          (Ⅱ)若f(x)=2x+m是定義在區(qū)間[-1,1]上的“局部奇函數(shù)”,求實數(shù)m的取值范圍;
          (Ⅲ)若f(x)=4x-m2x+1+m2-3為定義域R上的“局部奇函數(shù)”,求實數(shù)m的取值范圍.

          解:f(x)為“局部奇函數(shù)”等價于關(guān)于x的方程f(-x)=-f(x)有解.
          (Ⅰ)當f(x)=ax2+2x-4a(a∈R),時,
          方程f(-x)=-f(x)即2a(x2-4)=0,有解x=±2,
          所以f(x)為“局部奇函數(shù)”. …
          (Ⅱ)當f(x)=2x+m時,f(-x)=-f(x)可化為2x+2-x+2m=0,
          因為f(x)的定義域為[-1,1],所以方程2x+2-x+2m=0在[-1,1]上有解.…
          ,則
          設(shè),則,
          當t∈(0,1)時,g'(t)<0,故g(t)在(0,1)上為減函數(shù),
          當t∈(1,+∞)時,g'(t)>0,故g(t)在(1,+∞)上為增函數(shù). …
          所以t∈[]時,g(t)
          所以,即. …
          (Ⅲ)當f(x)=4x-m2x+1+m2-3時,f(-x)=-f(x)可化為4x+4-x-2m(2x+2-x)+2m2-6=0.
          t=2x+2-x≥2,則4x+4-x=t2-2,
          從而t2-2mt+2m2-8=0在[2,+∞)有解即可保證f(x)為“局部奇函數(shù)”.…
          令F(t)=t2-2mt+2m2-8,
          1° 當F(2)≤0,t2-2mt+2m2-8=0在[2,+∞)有解,
          由當F(2)≤0,即2m2-4m-4≤0,解得1-; …
          2° 當當F(2)>0時,t2-2mt+2m2-8=0在[2,+∞)有解等價于
          解得. …
          (說明:也可轉(zhuǎn)化為大根大于等于2求解)
          綜上,所求實數(shù)m的取值范圍為. …
          分析:利用局部奇函數(shù)的定義,建立方程關(guān)系,然后判斷方程是否有解即可.
          點評:本題主要考查新定義的應(yīng)用,利用新定義,建立方程關(guān)系,然后利用函數(shù)性質(zhì)進行求解是解決本題的關(guān)鍵,考查學生的運算能力.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          對于函數(shù)f(x),若存在區(qū)間M=[a,b](其中a<b),使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數(shù)f(x)的一個“穩(wěn)定區(qū)間”.給出下列4個函數(shù):
          ①f(x)=(x-1)2;②f(x)=|2x-1|;③f(x)=cos
          π2
          x
          ;④f(x)=ex.其中存在“穩(wěn)定區(qū)間”的函數(shù)有
           
          (填出所有滿足條件的函數(shù)序號)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          對于函數(shù)f(x),若在其定義域內(nèi)存在兩個實數(shù)a,b(a<b),使當x∈[a,b]時,f(x)的值域也是[a,b],則稱函數(shù)f(x)為“科比函數(shù)”.若函數(shù)f(x)=k+
          x+2
          是“科比函數(shù)”,則實數(shù)k的取值范圍是
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點.如果函數(shù)
          f(x)=ax2+bx+1(a>0)有兩個相異的不動點x1,x2
          (1)若x1<1<x2,且f(x)的圖象關(guān)于直線x=m對稱,求證:
          12
          <m<1;
          (2)若|x1|<2且|x1-x2|=2,求b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          對于函數(shù)f(x),若f(x0)=x0,則稱x0為f(x)的:“不動點”;若f[f(x0)]=x0,則稱x0為f(x)的“穩(wěn)定點”.函數(shù)f(x)的“不動點”和“穩(wěn)定點”的集合分別記為A和B,即A={x|f[f(x)]=x}.
          (1)設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),且A=∅,求證:B=∅;
          (2)設(shè)函數(shù)f(x)=3x+4,求集合A和B,并分析能否根據(jù)(1)(2)中的結(jié)論判斷A=B恒成立?若能,請給出證明,若不能,請舉以反例.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          對于函數(shù)f(x),若存在x0∈R,使得f(x0)=x0,則稱x0為函數(shù)f(x)的不動點.若函數(shù)f(x)=
          x2+a
          bx-c
          (b,c∈N*)有且僅有兩個不動點0和2,且f(-2)<-
          1
          2

          (1)試求函數(shù)f(x)的單調(diào)區(qū)間,
          (2)已知各項不為0的數(shù)列{an}滿足4Sn•f(
          1
          an
          )=1,其中Sn表示數(shù)列{an}的前n項和,求證:(1-
          1
          an
          )an+1
          1
          e
          <(1-
          1
          an
          )an

          (3)在(2)的前題條件下,設(shè)bn=-
          1
          an
          ,Tn表示數(shù)列{bn}的前n項和,求證:T2011-1<ln2011<T2010

          查看答案和解析>>

          同步練習冊答案