日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          【題目】已知四邊形為直角梯形,,,且,,點分別在線段上,使四邊形為正方形,將四邊形沿翻折至使.

          (1)若線段中點為,求翻折后形成的多面體的體積;

          (2)求直線與平面所成角的正弦值.

          【答案】(1);(2).

          【解析】

          (1)多面體一般可通過切割的方式轉化成常規(guī)幾何體進行求解。分析題意可得

          (2)求線面角需要先作直線在平面的垂線,找出垂足,進而找出直線在平面的線段投影,再根據幾何關系進行求解。

          (1);

          (2)易證

          所以直線與平面所成角就是直線與平面的所成角.

          于點,連接,如圖,

          由四邊形為正方形,

          所以,,

          所以平面,

          所以,

          所以平面

          所以為直線與平面所成的角,

          因為的中點,

          所以,

          因為,

          所以

          因為,

          所以

          即直線與平面所成角的正弦值是.

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          【題目】選修4-4:坐標系與參數方程

          在平面直角坐標系,已知直線的參數方程為(為參數),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線交于兩點.

          (1)求直線l的普通方程和曲線的直角坐標方程;

          (2)已知點的極坐標為,的值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】一個口袋里裝有個白球和個紅球,從口袋中任取個球.

          (1)共有多少種不同的取法?

          (2)其中恰有一個紅球,共有多少種不同的取法?

          (3)其中不含紅球,共有多少種不同的取法?

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】在某班進行的歌唱比賽中,共有5位選手參加,其中3位女生,2位男生.如果2位男生不能連著出場,且女生甲不能排在第一個,那么出場順序的排法種數為( )

          A. 30B. 36C. 60D. 72

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】某學校研究性學習小組調查學生使用智能手機對學習成績的影響,詢問了30名同學,得到如下的列聯表:

          使用智能手機

          不使用智能手機

          總計

          學習成績優(yōu)秀

          4

          8

          12

          學習成績不優(yōu)秀

          16

          2

          18

          總計

          20

          10

          30

          (Ⅰ)根據以上列聯表判斷,能否在犯錯誤的概率不超過0.005的前提下認為使用智能手機對學習成績有影響?

          (Ⅱ)從使用智能手機的20名同學中,按分層抽樣的方法選出5名同學,求所抽取的5名同學中學習成績優(yōu)秀學習成績不優(yōu)秀的人數;

          (Ⅲ)從問題()中被抽取的5名同學,再隨機抽取3名同學,試求抽取3名同學中恰有2名同學為學習成績不優(yōu)秀的概率.

          參考公式:,其中

          參考數據:

          0.05

          0.025

          0.010

          0.005

          0.001

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知橢圓和拋物線,在上各取兩個點,這四個點的坐標為

          (Ⅰ)求的方程;

          (Ⅱ)設在第一象限上的點,在點處的切線交于兩點,線段的中點為,過原點的直線與過點且垂直于軸的直線交于點,證明:點在定直線上.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】夏天喝冷飲料已成為年輕人的時尚. 某飲品店購進某種品牌冷飲料若干瓶,再保鮮.

          (Ⅰ)飲品成本由進價成本和可變成本(運輸、保鮮等其它費用)組成.根據統(tǒng)計,“可變成本”(元)與飲品數量(瓶)有關系.之間對應數據如下表:

          飲品數量(瓶)

          2

          4

          5

          6

          8

          可變成本(元)

          3

          4

          4

          4

          5

          依據表中的數據,用最小二乘法求出關于的線性回歸方程;如果該店購入20瓶該品牌冷飲料,估計“可變成本”約為多少元?

          (Ⅱ)該飲品店以每瓶10元的價格購入該品牌冷飲料若干瓶,再以每瓶15元的價格賣給顧客。如果當天前8小時賣不完,則通過促銷以每瓶5元的價格賣給顧客(根據經驗,當天能夠把剩余冷飲料都低價處理完畢,且處理完畢后,當天不再購進).該店統(tǒng)計了去年同期100天該飲料在每天的前8小時內的銷售量(單位:瓶),制成如下表:

          每日前8個小時

          銷售量(單位:瓶)

          15

          16

          17

          18

          19

          20

          21

          頻數

          10

          15

          16

          16

          15

          13

          15

          若以100天記錄的頻率作為每日前8小時銷售量發(fā)生的概率,若當天購進18瓶,求當天利潤的期望值.

          (注:利潤=銷售額購入成本 “可變本成”)

          參考公式:回歸直線方程為,其中

          參考數據:.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖,在三棱錐中,,點為邊的中點.

          (Ⅰ)證明:平面平面;

          (Ⅱ)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】在直角坐標系中,,不在軸上的動點滿足于點的中點。

          (1)求點的軌跡的方程;

          (2)設曲線軸正半軸的交點為,斜率為的直線交兩點,記直線的斜率分別為,試問是否為定值?若是,求出該定值;若不是,請說明理由。

          查看答案和解析>>

          同步練習冊答案