【題目】如圖,正方形的邊長為2,
分別為線段
的中點(diǎn),在五棱錐
中,
為棱
的中點(diǎn),平面
與棱
分別交于點(diǎn)
.
(1)求證:;
(2)若底面
,且
,求直線
與平面
所成角的大小.
【答案】(1)詳見解析(2)
【解析】
試題分析:(1)證明線面平行,一般利用線面平行判定定理,即從線線平行出發(fā)給予證明,而線線平行的尋找與論證,往往需要結(jié)合平幾條件,如本題利用正方形性質(zhì)得,從而有
平面
.而線線平行的證明,一般利用線面平行性質(zhì)定理,即從兩平面交線出發(fā)給予證明(2)利用空間向量解決線面角,一般先建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),利用方程組解出平面法向量,再根據(jù)向量數(shù)量積求夾角,最后根據(jù)線面角與向量夾角之間互余關(guān)系求大小.
試題解析:解:(1)證明:在正方形中,因?yàn)?/span>
是
的中點(diǎn),所以
.
又因?yàn)?/span>平面
,所以
平面
.因?yàn)?/span>
平面
,且平面
平面
,所以
(2)因?yàn)?/span>底面
,所以
,如圖建立空間直角坐標(biāo)系
,則
,
,
.
設(shè)平面的法向量為
,
則,即
,
令,則
,所以
.
設(shè)直線與平面
所成角為
,
則,
因此直線與平面
所成角的大小為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y=f(x),x∈(-a,a),F(xiàn)(x)=f(x)+f(-x),則F(x)是( )
A.奇函數(shù)
B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)
D.非奇非偶函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直角梯形中,
,
分別是
上的點(diǎn),
,且
(如圖1). 將四邊形
沿
折起,連結(jié)
(如圖2). 在折起的過程中,下列說法中錯誤的個數(shù)是( )
①平面
;
②四點(diǎn)不可能共面;
③若,則平面
平面
;
④平面與平面
可能垂直.
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},則滿足條件ACB的集合C的個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某海濱城市附近海面有一臺風(fēng),據(jù)監(jiān)測,當(dāng)前臺風(fēng)中心位于城市(如圖)的東偏南
方向300km的海面
處,并以20km/h的速度向西偏北
方向移動,臺風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60km,并以10km/h的速度不斷增大,問幾小時后該城市開始受到臺風(fēng)的侵襲?受到臺風(fēng)侵襲的時間有多少小時?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:
.
(1)直線過點(diǎn)
,且與圓
交于
兩點(diǎn),若
,求直線
的方程;
(2)過圓上一動點(diǎn)
作平行于
軸的直線
,設(shè)
與
軸的交點(diǎn)為
,若向量
,求動點(diǎn)
的軌跡方程,并說明此軌跡是什么曲線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com