【題目】某醫(yī)藥研究所開發(fā)的一種藥,如果成年人按規(guī)定的劑量服用,據(jù)監(jiān)測,服藥后每毫升中的含藥量(微克)與時間
(小時)之間近似滿足如圖所示的曲線.(當
時,
).
(1)寫出第一次服藥后與
之間的函數(shù)關(guān)系式
;
(2)據(jù)進一步測定,每毫升血液中含藥量不少于微克時,治療疾病有效,求服藥一次后治療疾病有效時間.
【答案】(1);(2)
小時.
【解析】試題分析:(1)由函數(shù)圖象我們不難得到這是一個分段數(shù),第一段是正比例函數(shù)的一段,第二段是指數(shù)型函數(shù)的一段,由于兩段函數(shù)均過,故我們可將
點代入函數(shù)的解析式,求出參數(shù)值后,即可得到函數(shù)的解析式;(2)由(1)的結(jié)論我們將函數(shù)值
代入函數(shù)解析式,構(gòu)造不等式,可以求出每毫升血液中含藥量不少于
微克的起始時刻和結(jié)束時刻,他們之間的差值即為服藥一次治療疾病有效的時間.
試題解析:(1)由圖象,設,當
時,由
得
;由
得
,
.
(2)由得
或
,解得
,因此服藥一次后治療疾病有效的時間是
(小時).
科目:高中數(shù)學 來源: 題型:
【題目】羅源濱海新城建一座橋,兩端的橋墩已建好,這兩墩相距米,余下工程只需建兩端橋墩之間的橋面和橋墩,經(jīng)預測,一個橋墩的工程費用為32萬元,距離為x米的相鄰兩墩之間的橋面工程費用為
萬元.假設橋墩等距離分布,所有橋墩都視為點,且不考慮其他因素,記余下工程的費用為
萬元.
(1)試寫出關(guān)于
的函數(shù)關(guān)系式;
(2)當=96米,需新建多少個橋墩才能使余下工程的費用
最。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知的邊
所在直線的方程為
,
滿足
,點
在
邊所在直線上且滿足
.
(1)求邊所在直線的方程;
(2)求外接圓的方程;
(3)若動圓過點
,且與
的外接圓外切,求動圓
的圓心的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,底面
是直角梯形,
,
,
,側(cè)面
底面
,且
是以
為底的等腰三角形.
(Ⅰ)證明:
(Ⅱ)若四棱錐的體積等于
.問:是否存在過點
的平面
分別交
,
于點
,使得平面
平面
?若存在,求出
的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù) 的圖象在點
處的切線的傾斜角為
,對于任意的
,函數(shù)
在區(qū)間
上總不是單調(diào)函數(shù), 求
的取值范圍;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,已知曲線
的極坐標方程為
,它在點
處的切線為直線
.
(Ⅰ)求直線的直角坐標方程;
(Ⅱ)已知點為橢圓
上一點,求點
到直線
的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點分別為
,短軸兩個端點為
,且四邊形
是邊長為2的正方形.
(1)求橢圓的方程;
(2)設是橢圓
上一點,
為橢圓長軸上一點,求
的最大值與最小值;
(3)設是橢圓
外的動點,滿足
,點
是線段
與該橢圓的交點,點
在線段
上,并且滿足
,
,求點
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=
(t+1)lnx,,其中t∈R.
(1)若t=1,求證:當x>1時,f(x)>0成立;
(2)若t> ,判斷函數(shù)g(x)=x[f(x)+t+1]的零點的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com