日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 13、圓x2+y2=1上的點(diǎn)到直線x=2的距離的最大值是
          3
          分析:首先根據(jù)題意判斷出圓上的點(diǎn)到直線距離最大值的情況,然后分析圓的圓心以及半徑,最后直接求解即可.
          解答:解:根據(jù)題意,圓上點(diǎn)到直線距離最大值為:
          半徑+圓心到直線的距離.
          而根據(jù)圓x2+y2=1
          圓心為(0,0),半徑為1
          ∴dmax=1+2=3
          故答案為:3
          點(diǎn)評:本題考查點(diǎn)到直線的距離問題,圓到直線的最大值,需要通過對圓與直線的關(guān)系深入分析,屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)P為圓x2+y2=1上的動點(diǎn),過P作x軸的垂線,垂足為Q,若
          PM
          MQ
          ,(其中λ為正常數(shù)),則點(diǎn)M的軌跡為( 。
          A、圓B、橢圓C、雙曲線D、拋物線

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知點(diǎn)P是圓x2+y2=1上的一個動點(diǎn),過點(diǎn)P作PQ⊥x軸于點(diǎn)Q,設(shè)
          OM
          =
          OP
          +
          OQ
          ,則點(diǎn)M的軌跡方程
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知定點(diǎn)A(2,0),點(diǎn)Q是圓x2+y2=1上的動點(diǎn),∠AOQ的平分線交AQ于M,當(dāng)Q點(diǎn)在圓上移動時,求動點(diǎn)M的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知點(diǎn)P是圓x2+y2=1上的動點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件
          QM
          =2
          QP
          的點(diǎn)M的軌跡為曲線C.
          (1)求曲線C的方程;
          (2)設(shè)過點(diǎn)N(1,0)且斜率為k1(k1≠0)的直線l被曲線C所截得的弦的中點(diǎn)為A,O為坐標(biāo)原點(diǎn),直線OA的斜率為k2,求k12+k22的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知P是直線x+y=8上的點(diǎn),P與圓x2+y2=1上的點(diǎn)距離的最小值為
           

          查看答案和解析>>

          同步練習(xí)冊答案