日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某學習軟件以數(shù)學知識為題目設置了一項闖關游戲,共有15關,每過一關可以得到一定的積分,現(xiàn)有三種積分方案供闖關者選擇.方案一:每闖過一關均可獲得40積分;方案二:闖過第一關可獲得5積分,后面每關的積分都比前一關多5;方案三:闖過第一關可獲得0.5積分,后面每關的積分都是前一關積分的2.若某關闖關失敗則停止游戲,最終積分為闖過的各關的積分之和,設三種方案闖過n)關后的積分之和分別為,要求闖關者在開始前要選擇積分方案.

          1)求出的表達式;

          2)為獲得盡量多的積分,如果你是一個闖關者,試分析這幾種積分方案該如何選擇?小明通過試驗后覺得自己至少能闖過12關,則他應該選擇第幾種積分方案?

          【答案】1;2)見解析,小明應該選擇方案三.

          【解析】

          1)根據(jù)題意,分別得到各方案所對應的數(shù)列,從而得到

          2)令,分別得到的范圍,結(jié)合題意中的,從而做出判斷.

          1)按方案一闖過各關所得積分構(gòu)成常數(shù)數(shù)列,故;

          按方案二闖過各關所得積分構(gòu)成首項為5,公差為5的等差數(shù)列,故;

          按方案三闖過各關所得積分構(gòu)成首項為,公比為2的等比數(shù)列,故

          2)令,即,解得,

          而當時,

          又因為,故恒成立,

          故方案二不予考慮.

          ,即,解得,

          故有,當時,;當,,

          故當能闖過的關數(shù)小于10時,應選擇方案一;

          當能闖過的關數(shù)大于等于10時,應選擇方案三.

          小明應該選擇方案三.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的左右焦點分別為,,該橢圓與軸正半軸交于點,且是邊長為的等邊三角形.

          1)求橢圓的標準方程;

          2)過點任作一直線交橢圓于,兩點,平面上有一動點,設直線,的斜率分別為,,,且滿足,求動點的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù).

          (Ⅰ)求函數(shù)的極值點;

          (Ⅱ)若直線過點,并且與曲線相切,求直線的方程;

          (Ⅲ)設函數(shù),其中,求函數(shù)在區(qū)間上的最小值.(其中為自然對數(shù)的底數(shù))

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓 的上下兩個焦點分別為 ,過點軸垂直的直線交橢圓、兩點, 的面積為,橢圓的離心力為

          (Ⅰ)求橢圓的標準方程;

          (Ⅱ)已知為坐標原點,直線 軸交于點,與橢圓交于, 兩個不同的點,若存在實數(shù),使得,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓 的上下兩個焦點分別為, ,過點軸垂直的直線交橢圓、兩點, 的面積為,橢圓的離心力為

          (Ⅰ)求橢圓的標準方程;

          (Ⅱ)已知為坐標原點,直線 軸交于點,與橢圓交于, 兩個不同的點,若存在實數(shù),使得,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】橢圓C)的左、右焦點分別是、,離心率為,過且垂直于軸的直線被橢圓C截得的線段長為3

          1)求橢圓C的方程;

          2)點P是橢圓C上除長軸端點外的任一點,連接,設的角平分線PMC的長軸于點,求m的取值范圍;

          3)在(2)的條件下,過點P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點設直線、的斜率分別為,若,試證明為定值,并求出這個定值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知某超市為顧客提供四種結(jié)賬方式:現(xiàn)金、支付寶、微信、銀聯(lián)卡.若顧客甲沒有銀聯(lián)卡,顧客乙只帶了現(xiàn)金,顧客丙、丁用哪種方式結(jié)賬都可以,這四名顧客購物后,恰好用了其中的三種結(jié)賬方式,那么他們結(jié)賬方式的可能情況有( )種

          A. 19B. 7C. 26D. 12

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù).

          (1)若函數(shù)在點處的切線方程為,求的值;

          (2)若在區(qū)間上,函數(shù)的圖象恒在直線下方,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】為了促進學生的全面發(fā)展,某市教育局要求本市所有學校重視社團文化建設,2014年該市某中學的某新生想通過考核選撥進入該校的“電影社”和“心理社”,已知該同學通過考核選撥進入這兩個社團成功與否相互獨立根據(jù)報名情況和他本人的才藝能力,兩個社團都能進入的概率為,至少進入一個社團的概率為,并且進入“電影社”的概率小于進入“心理社”的概率

          (Ⅰ)求該同學分別通過選撥進入“電影社”的概率和進入心理社的概率;

          (Ⅱ)學校根據(jù)這兩個社團的活動安排情況,對進入“電影社”的同學增加1個校本選修課學分,對進入“心理社”的同學增加0.5個校本選修課學分.求該同學在社團方面獲得校本選修課學分分數(shù)不低于1分的概率.

          查看答案和解析>>

          同步練習冊答案