【題目】如圖,在四棱錐中,底面
為矩形,
是等邊三角形,
是直角三角形,
為
中點(diǎn).
(1)求證:;
(2)求二面角的余弦值.
【答案】(1)證明見解析 (2)
【解析】
(1)取的中點(diǎn)
,根據(jù)等邊三角形性質(zhì)得
,根據(jù)矩形性質(zhì)得
,最好根據(jù)線面垂直判定定理與性質(zhì)定理得結(jié)果;
(2)法一:建立空間直角坐標(biāo)系,利用向量數(shù)量積求各面方向量 ,再根據(jù)二面角與法向量夾角關(guān)系求結(jié)果;法二:取的中點(diǎn)
,證明
為二面角
的平面角,再根據(jù)解三角形得結(jié)果.
(1)取的中點(diǎn)
,連接
,
在等邊三角形中,
;
在矩形中,
,則
.
∵,∴
平面
.
∵平面
,∴
.
(2)法一:設(shè),則
,
∵且點(diǎn)
為
的中點(diǎn),(三線合一)
∴為等腰直角三角形且
.
∵,∴
.
∴兩兩垂直
以為原點(diǎn),
為
軸,
為
軸,
為
軸,
建立空間直角坐標(biāo)系,
則,
.
設(shè)平面的一個(gè)法向量為的
,由
得
令得
.
(注:也可證明為平面
的一個(gè)法向量)
設(shè)平面的一個(gè)法向量為
,由
得
令得
.
.
由圖知,二面角為鈍角,則二面角
的余弦值為
.
(2)法二:
設(shè),則
,
∵且點(diǎn)
為
的中點(diǎn),(三線合一)
∴為等腰直角三角形,∴
,
∴為等腰三角形,
取的中點(diǎn)
,連接
,∵
,∴
.
在等邊三角形中,連接
,則
,
.
則為二面角
的平面角.
連接,在
中,由余弦定理,
.
則二面角的余弦值為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某人打算做一個(gè)正四棱錐形的金字塔模型,先用木料搭邊框,再用其他材料填充,已知金字塔的每一條棱和邊都相等.
(1)求證:直線AC垂直于直線SD;
(2)若搭邊框共使用木料24米,則需要多少立方米的填充材料才能將整個(gè)金字塔內(nèi)部填滿?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)到點(diǎn)
的距離與它到直線
的距離
的比值為
,設(shè)動(dòng)點(diǎn)
形成的軌跡為曲線
..
(1)求曲線的方程;
(2)過點(diǎn)的直線與曲線
交于
兩點(diǎn),過
點(diǎn)作
,垂足為
,過
點(diǎn)作
,垂足為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列中存在三項(xiàng),按一定次序排列構(gòu)成等比數(shù)列,則稱
為“等比源數(shù)列”。
(1)在無窮數(shù)列中,
,
,求數(shù)列
的通項(xiàng)公式;
(2)在(1)的結(jié)論下,試判斷數(shù)列是否為“等比源數(shù)列”,并證明你的結(jié)論;
(3)已知無窮數(shù)列為等差數(shù)列,且
,
(
),求證:數(shù)列
為“等比源數(shù)列”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列 的前
項(xiàng)和為
,對一切
,點(diǎn)
都在函數(shù)
的圖象上.
(1)求,歸納數(shù)列
的通項(xiàng)公式(不必證明);
(2)將數(shù)列依次按1項(xiàng)、2項(xiàng)、3項(xiàng)、4項(xiàng)循環(huán)地分為
,
,
,
;
,
,
,
;
,…,分別計(jì)算各個(gè)括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為
,求
的值;
(3)設(shè)為數(shù)列
的前
項(xiàng)積,若不等式
對一切
都成立,其中
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的中心為
,一個(gè)方向向量為
的直線
與
只有一個(gè)公共點(diǎn)
(1)若且點(diǎn)
在第二象限,求點(diǎn)
的坐標(biāo);
(2)若經(jīng)過的直線
與
垂直,求證:點(diǎn)
到直線
的距離
;
(3)若點(diǎn)、
在橢圓上,記直線
的斜率為
,且
為直線
的一個(gè)法向量,且
求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)在“精準(zhǔn)扶貧”行動(dòng)中,決定幫助一貧困山區(qū)將水果運(yùn)出銷售.現(xiàn)有8輛甲型車和4輛乙型車,甲型車每次最多能運(yùn)6噸且每天能運(yùn)4次,乙型車每次最多能運(yùn)10噸且每天能運(yùn)3次,甲型車每天費(fèi)用320元,乙型車每天費(fèi)用504元.若需要一天內(nèi)把180噸水果運(yùn)輸?shù)交疖囌,則通過合理調(diào)配車輛運(yùn)送這批水果的費(fèi)用最少為______元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的兩個(gè)焦點(diǎn)為
、
,P為該雙曲線上一點(diǎn),滿足
,P到坐標(biāo)原點(diǎn)O的距離為d,且
,則
________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自然狀態(tài)下的魚類是一種可再生資源,為了持續(xù)利用這一資源,需從宏觀上考察其再生能力及捕撈強(qiáng)度對魚群總量的影響.用表示某魚群在第
年年初的總量且
.不考慮其他因素,設(shè)在第
年內(nèi)魚群的繁殖量及捕撈量都與
成正比,死亡量與
成正比,這些比例系數(shù)依次為正常數(shù)
,
,
(1)求與
的關(guān)系式
(2)若每年年初魚群的總量保持不變,求,
,
,
所應(yīng)滿足的條件
(3)設(shè),
,為保證對任意
,都有
,則捕撈強(qiáng)度
的最大允許值是多少?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com