日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的長軸長是短軸長的
          3
          倍,F(xiàn)1,F(xiàn)2是它的左,右焦點.
          (1)若P∈C,且
          PF1
          PF
          2
          =0
          ,|PF1|•|PF2|=4,求橢圓C的方程;
          (2)在(1)的條件下,過動點Q作以F2為圓心、以1為半徑的圓的切線QM(M是切點),且使QF1|=
          2
          |QM|,,求動點Q的軌跡方程.
          分析:(1) 利用a=
          3
          b
           和|PF1|2+|PF2|2=(2c)2,以及|PF1|+|PF2|=2a 求出a2和b2的值,解得橢圓C的方程.
          (2)由條件可得|QF1|2=2|QM|2,再由QM是⊙F2的切線 可得|QM|2=|QF2|2-1,故有|QF1|2=2(|QF2|2-1).
          設Q(x,y),代入上式化簡即得動點Q的軌跡方程.
          解答:精英家教網(wǎng)解:(1)依題意知a=
          3
          b
          ①,
          PF1
          PF2
          =0
          ,∴PF1⊥PF2,∴|PF1|2+|PF2|2=(2c)2=4(a2-b2)=8b2
          又P∈C,由橢圓定義可知|PF1|+|PF2|=2a,(|PF1|+|PF2|)2=8b2+8=4a2--②,
          由①②得a2=6,b2=2.所以橢圓C的方程為
          x2
          6
          +
          y2
          2
          =1

          (2)由(1)得c=2.∴F1(-2,0)、F2(2,0)
          由已知|QF1|=
          2
          |QM|
          ,即|QF1|2=2|QM|2,
          ∵QM是⊙F2的切線,∴|QM|2=|QF2|2-1,∴|QF1|2=2(|QF2|2-1).
          設Q(x,y),則(x+2)2+y2=2[(x-2)2+y2-1],
          即(x-6)2+y2=34(或x2+y2-12x+2=0),
          綜上所述,所求動點Q的軌跡方程為:(x-6)2+y2=34.
          點評:本題考查橢圓的定義、橢圓的標準方程,以及橢圓的簡單性質(zhì)的應用,其中,由條件得出|QF1|2=2(|QF2|2-1),
          是解題的關鍵,體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率為
          1
          2
          ,且經(jīng)過點P(1,
          3
          2
          )

          (1)求橢圓C的方程;
          (2)設F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關系,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的短軸長為2
          3
          ,右焦點F與拋物線y2=4x的焦點重合,O為坐標原點.
          (1)求橢圓C的方程;
          (2)設A、B是橢圓C上的不同兩點,點D(-4,0),且滿足
          DA
          DB
          ,若λ∈[
          3
          8
          ,
          1
          2
          ],求直線AB的斜率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)經(jīng)過點A(1,
          3
          2
          ),且離心率e=
          3
          2

          (Ⅰ)求橢圓C的方程;
          (Ⅱ)過點B(-1,0)能否作出直線l,使l與橢圓C交于M、N兩點,且以MN為直徑的圓經(jīng)過坐標原點O.若存在,求出直線l的方程;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•房山區(qū)二模)已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的長軸長是4,離心率為
          1
          2

          (Ⅰ)求橢圓方程;
          (Ⅱ)設過點P(0,-2)的直線l交橢圓于M,N兩點,且M,N不與橢圓的頂點重合,若以MN為直徑的圓過橢圓C的右頂點A,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的短軸長為2,離心率為
          2
          2
          ,設過右焦點的直線l與橢圓C交于不同的兩點A,B,過A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記λ=
          AP+BQ
          PQ
          ,若直線l的斜率k≥
          3
          ,則λ的取值范圍為
           

          查看答案和解析>>

          同步練習冊答案