日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分12分)

          設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,過(guò)點(diǎn)垂直的直線交軸負(fù)半軸于點(diǎn),且

          (1)求橢圓的離心率;

          (2)若過(guò)、、三點(diǎn)的圓恰好與直線相切,求橢圓

          方程;

          (3)在(2)的條件下,過(guò)右焦點(diǎn)作斜率為的直線與橢圓交于

          點(diǎn),在軸上是否存在點(diǎn)使得以為鄰邊的平行四邊形是菱形,

          如果存在,求出的取值范圍,如果不存在,說(shuō)明理由.

           

          【答案】

          (1);(2);(3)

          【解析】(1) 設(shè)Q(x0,0),由(c,0),A(0,b),知     

          ,由 ,可知中點(diǎn).

          從而得到,,進(jìn)一步計(jì)算可求出記心率的值.

          (2)由⑴知,可求出△AQF的外接圓圓心為(-,0),半徑r=|FQ|=,

          所以再利用圓心到直線l的距離等于半徑a,可得到關(guān)于a的方程解出a值,從而得到橢圓C的方程.

          (3) 設(shè),平行四邊形是菱形可轉(zhuǎn)化為, ,

          所以,則,然后直線MN與橢圓方程聯(lián)立,消y,再借助韋達(dá)定理來(lái)解決即可.

          解:(1)設(shè)Q(x0,0),由(c,0),A(0,b)

                

          ,

          由于 即中點(diǎn).

          ,  

          故橢圓的離心率              (3 分)    

          (2)由⑴知于是,0) Q,

          △AQF的外接圓圓心為(-,0),半徑r=|FQ|=

          所以,解得=2,∴c =1,b=, 

          所求橢圓方程為            (6 分)  

          (3)由(Ⅱ)知     

             代入得

          設(shè),

          ,              (8分)

          由于菱形對(duì)角線垂直,則                  

                 

                  (10分)

          由已知條件知          

              

          故存在滿足題意的點(diǎn)P且的取值范圍是.     (12 分)

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (文) (本小題滿分12分已知函數(shù)y=4-2
          3
          sinx•cosx-2sin2x(x∈R)

          (1)求函數(shù)的值域和最小正周期;
          (2)求函數(shù)的遞減區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•自貢三模)(本小題滿分12分>
          設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
          ON
          |=6,
          ON
          =
          5
          OM
          .過(guò)點(diǎn)M作MM1丄y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1,
          OT
          =
          M1M
          +
          N1N
          ,記點(diǎn)T的軌跡為曲線C.
          (I)求曲線C的方程:
          (H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
          OP
          =3
          OA
          ,S△PAQ=-26tan∠PAQ求直線L的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2009湖南卷文)(本小題滿分12分)

          為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

          (I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

          (II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (本小題滿分12分)

          某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

          (注:利潤(rùn)與投資單位是萬(wàn)元)

          (1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案