日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知向量
          a
          =(cosx+sinx,
          3
          cosx),  
          b
          =(cosx-sinx,2sinx)
          ,記f(x)=
          a
          b
          ,  x∈R

          (1)求函數(shù)f(x)的最小正周期.
          (2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f(A)=1,且a=1,b+c=2,求△ABC的面積.
          分析:(1)利用兩個(gè)向量的數(shù)量積公式,兩角和的正弦公式,求出函數(shù) f(x)=
          a
          b
          =sin(2x+
          π
          6
          )
          ,從而得到f(x)的最小正周期.
          (2)根據(jù)f(A)=1,再由sin(2x+
          π
          6
          )=
          1
          2
          ,A為△ABC的內(nèi)角,求出角A的值,由余弦定理求出bc的值,利用S△ABC=
          1
          2
          bcsinA
          求出△ABC的面積.
          解答:解:(1)由題意可得,函數(shù) f(x)=
          a
          b
          =cos2x-sin2x+
          3
          cosx•2sinx=cos2x+
          3
          sin2x=2sin(2x+
          π
          6
          )
          ,…(5分)
          故f(x)的最小正周期為T=
          2
          .…(6分)
          (2)∵f(A)=1,
          sin(2x+
          π
          6
          )=
          1
          2
          ,又A為△ABC的內(nèi)角,
          π
          6
          <2A+
          π
          6
          13π
          6

          2A+
          π
          6
          =
          6
          ,
          A=
          π
          3
          …(9分)
          由余弦定理得b2+c2-a2=bc,
          ∴(b+c)2-a2=3bc,又a=1,b+c=2
          ∴bc=1.  …(11分)
          S△ABC=
          1
          2
          bcsinA=
          3
          4
          .…(13分)
          點(diǎn)評(píng):本題主要考查兩個(gè)向量的數(shù)量積公式,兩角和的正弦公式,以及余弦定理的應(yīng)用,求出函數(shù) f(x)=
          a
          b
          =sin(2x+
          π
          6
          )
          ,是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知向量
          a
          =(-cosα,1+sinα)
          ,
          b
          =(2sin2
          α
          2
          ,sinα)

          (Ⅰ)若|
          a
          +
          b
          |=
          3
          ,求sin2α的值;
          (Ⅱ)設(shè)
          c
          =(cosα,2)
          ,求(
          a
          +
          c
          )•
          b
          的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知向量
          a
          =(cosωx-sinωx,sinωx)
          ,
          b
          =(-cosωx-sinωx,2
          3
          cosωx)
          ,其中ω>0,且函數(shù)f(x)=
          a
          b
          (λ為常數(shù))的最小正周期為π.
          (Ⅰ)求函數(shù)y=f(x)的圖象的對(duì)稱(chēng)軸;
          (Ⅱ)若函數(shù)y=f(x)的圖象經(jīng)過(guò)點(diǎn)(
          π
          4
          ,0)
          ,求函數(shù)y=f(x)在區(qū)間[0,
          12
          ]
          上的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知向量
          a
          =(cos
          θ
          2
          ,sin
          θ
          2
          )
          ,
          b
          =(2,1)
          ,且
          a
          b

          (1)求tanθ的值;
          (2 )求
          cos2θ
          2
          cos(
          π
          4
          +θ)•sinθ
          的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知向量
          a
          =(cos(ωx-
          π
          6
          ),  sin(ωx-
          π
          4
          )),  
          b
          =(sin(
          2
          3
          π-ωx), sin(ωx+
          π
          4
          ))
          (其中ω>0).若函數(shù)f(x)=2
          a
          b
          -1
          的圖象相鄰對(duì)稱(chēng)軸間距離為
          π
          2

          (Ⅰ)求ω的值;
          (Ⅱ)求f(x)在[-
          π
          12
          ,  
          π
          2
          ]
          上的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知向量
          a
          =(cosθ,sinθ),
          b=
          (cos2θ-1,sin2θ),
          c
          =(cos2θ,sin2θ-
          3
          )
          .其中θ≠kπ,k∈Z.
          (1)求證:
          a
          b
          ;
          (2)設(shè)f(θ)=
          a
          c
          ,且θ∈(0,π),求f(θ)
          的值域.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案