日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)f(x),g(x)是定義域為R的恒大于零的可導(dǎo)函數(shù),且f′(x)g(x)-f(x)g′(x)<0,則當a<x<b時,下列結(jié)論中正確的是( 。
          分析:構(gòu)造函數(shù)F(x)=
          f(x)
          g(x)
          ,求導(dǎo)可判函數(shù)F(x)為R上單調(diào)遞減的函數(shù),結(jié)合a<x<b可得
          f(a)
          g(a)
          f(x)
          g(x)
          f(b)
          g(b)
          ,由題意結(jié)合選項分析,可得答案.
          解答:解:由題意構(gòu)造函數(shù)F(x)=
          f(x)
          g(x)

          則其導(dǎo)函數(shù)F′(x)=
          f′(x)g(x)-f(x)g′(x)
          [g(x)]2
          <0,
          故函數(shù)F(x)為R上單調(diào)遞減的函數(shù),
          ∵a<x<b,∴F(a)>F(x)>F(b),
          f(a)
          g(a)
          f(x)
          g(x)
          f(b)
          g(b)
          ,
          又f(x),g(x)是定義域為R的恒大于零的可導(dǎo)函數(shù),
          對式子的后半部分兩邊同乘以g(b)g(x)可得f(x)g(b)>f(b)g(x).
          故選C
          點評:本題考查構(gòu)造函數(shù)證明不等式,涉及商的導(dǎo)數(shù),屬基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x),g(x)是實數(shù)集R上的奇函數(shù),{x|f(x)>0}={x|4<x<10},{x|g(x)>0}={x|2<x<5},則集合{x|f(x)g(x)>0}=
          (4,5)∪(-5,-4)
          (4,5)∪(-5,-4)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個函數(shù),若對任意x∈[a,b],都有|f(x)-g(x)|≤1成立,則稱f(x)和g(x)在[a,b]上是“親密函數(shù)”,區(qū)間[a,b]稱為“親密區(qū)間”.若f(x)=x2-3x+4與g(x)=2x-1在[a,b]上是“親密函數(shù)”,則b-a的最大值是
          1
          1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)為奇函數(shù),g(x)為偶函數(shù),且f(x)+g(x)=2log2(1-x)
          (1)求f(x)及g(x)的解析式,并指出其單調(diào)性(無需證明).
          (2)求使f(x)<0的x取值范圍.
          (3)設(shè)h-1(x)是h(x)=log2x的反函數(shù),若存在唯一的x使
          1-h-1(x)1+h-1(x)
          =m-2x
          成立,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案