【題目】貴陽市交管部門于2018年4月對貴陽市長期執(zhí)行的“兩限”政策進行了調(diào)整,調(diào)整后貴陽市貴A普客小汽車擁有和外地牌照汽車一樣的駛?cè)胍画h(huán)開四停四的權(quán)利,為統(tǒng)計開放政策實施后貴陽市一環(huán)內(nèi)城區(qū)的交通流量狀況,市交管部門抽取了某月30天內(nèi)的日均汽車流量與實際容納量進行對比,比值記為,若該比值不超過1稱為“暢通”,否則稱為“擁堵”,如圖所示的程序框圖實現(xiàn)的功能是( )
A.求30天內(nèi)交通的暢通率B.求30天內(nèi)交通的擁堵率
C.求30天內(nèi)交通的暢通天數(shù)D.求30天內(nèi)交通的擁堵天數(shù)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點,
是拋物線
:
的焦點,
是拋物線
上位于第一象限內(nèi)的任意一點,過
,
,
三點的圓的圓心為
.
(1)是否存在過點,斜率為
的直線
,使得拋物線
上存在兩點關(guān)于直線
對稱?若存在,求出
的范圍;若不存在,說明理由;
(2)是否存在點,使得直線
與拋物線
相切于點
?若存在,求出點
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點,圓
,過R點的直線
交圓于M,N兩點過R點作直線
交SM于Q點.
(1)求Q點的軌跡方程;
(2)若A,B為Q的軌跡與x軸的左右交點,為該軌跡上任一動點,設(shè)直線AP,BP分別交直線l:
于點M,N,判斷以MN為直徑的圓是否過定點。如圓過定點,則求出該定點;如不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,傾斜角為
的直線
的參數(shù)方程為
(
為參數(shù)).在以坐標(biāo)原點為極點,
軸正半軸為極軸的極坐標(biāo)系中,曲線
的極坐標(biāo)方程為
.
(1)求直線的普通方程與曲線
的直角坐標(biāo)方程;
(2)若直線與曲線
交于
,
兩點,且
,求直線
的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在
處取得極小值
.
(1)求實數(shù)的值;
(2)設(shè),討論函數(shù)
的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,
軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為
,C1上任意一點P的直角坐標(biāo)為
,通過變換
得到點P的對應(yīng)點
的坐標(biāo).
(1)求點的軌跡C2的直角坐標(biāo)方程;
(2)直線的參數(shù)方程為
(
為參數(shù)),
交C2于點M、N,點
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三年級有1000名學(xué)生,其中理科班學(xué)生占80%,全體理科班學(xué)生參加一次考試,考試成績近似地服從正態(tài)分布N(72,36),若考試成績不低于60分為及格,則此次考試成績及格的人數(shù)約為( )
(參考數(shù)據(jù):若Z~N(μ,σ2),則P(μ﹣σ<Z≤μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544,P(μ﹣3σ<Z<μ+3σ)=0.9974)
A.778B.780C.782D.784
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為
,
為參數(shù)
,在以坐標(biāo)原點為極點,x軸非負(fù)半軸為極軸的極坐標(biāo)系中,曲線
的極坐標(biāo)方程為
.
Ⅰ
寫出
的普通方程和
的直角坐標(biāo)方程;
Ⅱ
若
與
相交于A,B兩點,求
的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com