日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. P是平行四邊形ABCD所在平面外的一點(diǎn),若P到四邊的距離都相等,則四邊形ABCD( 。
          分析:影到各邊的距離相等,得四邊形為圓外切四邊形.
          解答:解:如圖做PO⊥平行四邊形ABCD所在平面,
          O為垂足,因?yàn)镻G=PE=PF=PH,
          所以O(shè)E=OF=OG=OH,
          即O到各邊距離相等.
          所以四邊形ABCD有一個(gè)內(nèi)切圓.
          故選  C.
          點(diǎn)評(píng):本題考查直線與平面垂直的性質(zhì)定理的應(yīng)用,考查從同一點(diǎn)出發(fā)的斜線段相等,對(duì)應(yīng)射影長(zhǎng)相等,在立體幾何的證明中很常用,但應(yīng)注意是同一點(diǎn)出發(fā).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)在平面直角坐標(biāo)系xOy中,已知四邊形OABC是平行四邊形,且點(diǎn)A(4,  0),  C(1,  
          3
          )

          (1)求∠ABC的大;
          (2)設(shè)點(diǎn)M是OA的中點(diǎn),點(diǎn)P在線段BC上運(yùn)動(dòng)
          (包括端點(diǎn)),求
          OP
          CM
          的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在平面直角坐標(biāo)系xoy中,已知四邊形OABC是平行四邊形,A(4,0),C(1,
          3
          ),點(diǎn)M是OA的中點(diǎn),點(diǎn)P在線段BC上運(yùn)動(dòng)(包括端點(diǎn)),如圖
          (Ⅰ)求∠ABC的大小;
          (Ⅱ)是否存在實(shí)數(shù)λ,使
          OA
          -
          OP
          )⊥
          CM
          ?若存在,求出滿足條件的實(shí)數(shù)λ的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,四棱錐P-ABCD的底面是平行四邊形,PA⊥平面ABCD,AC⊥AB,AB=PA,點(diǎn)E是PD上的點(diǎn),且DE=λEP(0<λ≤1).
          (Ⅰ)求證:PB⊥AC;
          (Ⅱ)求λ的值,使PB∥平面ACE;
          (Ⅲ)當(dāng)λ=1時(shí),求三棱錐E-ABC與四棱錐P-ABCD的體積之比.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知三點(diǎn)A(4,0),B(t,2),C(6,t),t∈R.
          (1)若△ABC是直角三角形,求t的值;
          (2)O為原點(diǎn),若四邊形OACB是平行四邊形,且點(diǎn)P(x,y)在其內(nèi)部及其邊界上,求2y-x的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,PG⊥平面ABC,垂足G在AD上,且AG=
          1
          3
          GD,GB⊥GC.GB=GC=2,PG=4
          ,E是BC的中點(diǎn).
          (1)求證:PC⊥BG;
          (2)求異面直線GE與PC所成角的余弦值;
          (3)若F是PC上一點(diǎn),且DF⊥GC,求
          CF
          CP
          的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案