日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在直三棱柱ABC-A1B1C1中,AA1=AB=AC,AB⊥AC,M是CC1的中點(diǎn),Q是BC的中點(diǎn),點(diǎn)P在A1B1上,則直線PQ與直線AM所成的角等于


          1. A.
            30°
          2. B.
            45°
          3. C.
            60°
          4. D.
            90°
          D
          分析:先通過(guò)平移將兩條異面直線平移到同一個(gè)點(diǎn),得到的銳角或直角就是異面直線所成的角,借助兩直角三角形全等得到兩斜邊的垂直關(guān)系,從而得到直線PQ與直線AM所成的角.
          解答:解:如圖
          取AC的中點(diǎn)N,連接A1N、QN,
          可得:?
          ?
          ?AM⊥PQ.
          故選D.
          點(diǎn)評(píng):本小題主要考查異面直線所成的角,考查空間想象能力、運(yùn)算能力和推理論證能力,屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在直三棱柱ABC-A′B′C′中,已知AA′=4,AC=BC=2,∠ACB=90°,D是AB的中點(diǎn).
          (Ⅰ)求證:CD⊥AB′;
          (Ⅱ)求二面角A′-AB′-C的大;
          (Ⅲ)求直線B′D與平面AB′C所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•瀘州一模)如圖,在直三棱柱ABC-A′B′C′中,AB=BC=CA=a,AA′=
          2
          a
          ,則AB′與側(cè)面AC′所成角的大小為
          30°
          30°

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在直三棱柱ABC-A′B′C′中,AA′=AB=BC=1,∠ABC=90°.棱A′C′上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且EF=a (a為常數(shù)).
          (Ⅰ)在平面ABC內(nèi)確定一條直線,使該直線與直線CE垂直;
          (Ⅱ)判斷三棱錐B-CEF的體積是否為定值.若是定值,求出這個(gè)三棱錐的體積;若不是定值,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直線B′C與平面ABC成30°角.
          (1)求證:A′B⊥面AB′C;
          (2)求二面角B-B′C-A的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在直三棱柱ABC-A′B′C′中,點(diǎn)D是BC的中點(diǎn),∠ACB=90°,AC=BC=1,AA′=2,
          (1)欲過(guò)點(diǎn)A′作一截面與平面AC'D平行,問(wèn)應(yīng)當(dāng)怎樣畫(huà)線,寫(xiě)出作法,并說(shuō)明理由;
          (2)求異面直線BA′與 C′D所成角的余弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案