日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知點(diǎn)F是橢圓
          x2
          25
          +
          y2
          16
          =1的右焦點(diǎn),點(diǎn)A(4,1)是橢圓內(nèi)的一點(diǎn),點(diǎn)P(x,y)是橢圓上的一個(gè)動點(diǎn),則
          |
          FA
          +
          AP
          |的最大值是
           
          分析:由|
          FA
          +
          AP
          |=|
          FP
          |,|
          FP
          |的最大值=a+c=5+3=8,能夠?qū)С鰘
          FA
          +
          AP
          |的最大值.
          解答:解:|
          FA
          +
          AP
          |=|
          FP
          |,
          ∵|
          FP
          |的最大值=a+c=5+3=8,
          ∴|
          FA
          +
          AP
          |的最大值是8.
          故答案為:8.
          點(diǎn)評:本題考查橢圓的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,注意公式的合理運(yùn)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知點(diǎn)F1,F(xiàn)2為橢圓
          x2
          2
          +y2=1
          的兩個(gè)焦點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),圓O是以F1,F(xiàn)2為直徑的圓,一條直線與圓O相切并與橢圓交于不同的兩點(diǎn)A,B.
          (1)設(shè)b=f(k),求f(k)的表達(dá)式;
          (2)若
          OA
          OB
          =
          2
          3
          ,求直線l的方程;
          (3)若
          OA
          OB
          =m,(
          2
          3
          ≤m≤
          3
          4
          )
          ,求三角形OAB面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線C1:y=x2,F(xiàn)為拋物線的焦點(diǎn),橢圓C2
          x2
          2
          +
          y2
          a2
          =1
          (0<a<2);
          (1)若M是C1與C2在第一象限的交點(diǎn),且|MF|=
          3
          4
          ,求實(shí)數(shù)a的值;
          (2)設(shè)直線l:y=kx+1與拋物線C1交于A,B兩個(gè)不同的點(diǎn),l與橢圓C2交于P,Q兩個(gè)不同點(diǎn),AB中點(diǎn)為R,PQ中點(diǎn)為S,若O在以RS為直徑的圓上,且k 2
          1
          2
          ,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C1
          x2
          2
          +y2=1
          和圓C2x2+y2=1,左頂點(diǎn)和下頂點(diǎn)分別為A,B,且F是橢圓C1的右焦點(diǎn).
          (1)若點(diǎn)P是曲線C2上位于第二象限的一點(diǎn),且△APF的面積為
          1
          2
          +
          2
          4
          ,求證:AP⊥OP;
          (2)點(diǎn)M和N分別是橢圓C1和圓C2上位于y軸右側(cè)的動點(diǎn),且直線BN的斜率是直線BM斜率的2倍,求證:直線MN恒過定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知F是橢圓D:
          x2
          2
          +y2=1
          的右焦點(diǎn),過點(diǎn)E(2,0)且斜率為正數(shù)的直線l與D交于A、B兩點(diǎn),C是點(diǎn)A關(guān)于x軸的對稱點(diǎn).
          (Ⅰ)證明:點(diǎn)F在直線BC上;
          (Ⅱ)若
          EB
          EC
          =1
          ,求△ABC外接圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知點(diǎn)F1,F(xiàn)2為橢圓
          x2
          2
          +y2=1
          的兩個(gè)焦點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),圓O是以F1,F(xiàn)2為直徑的圓,一條直線與圓O相切并與橢圓交于不同的兩點(diǎn)A,B.
          (1)設(shè)b=f(k),求f(k)的表達(dá)式;
          (2)若
          OA
          OB
          =
          2
          3
          ,求直線l的方程;
          (3)若
          OA
          OB
          =m,(
          2
          3
          ≤m≤
          3
          4
          )
          ,求三角形OAB面積的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案