日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)正實(shí)數(shù)x,y,z滿足x2-3xy+9y2-z=0,則當(dāng)取得最大值時(shí),的最大值為(     )

          A.1                B.            C.-1                 D.3

           

          【答案】

          A

          【解析】

          試題分析:由題可知分子分母同時(shí)除以xy,可以得到x,y,z都是正實(shí)數(shù),所以可以利用基本不等式有所以,當(dāng)且僅當(dāng),將代入

          所以配方得,所以最大值是1.故答案是A.

          考點(diǎn):基本不等式

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)正實(shí)數(shù)x,y,z滿足x+2y+z=1,則
          1
          x+y
          +
          9(x+y)
          y+z
          的最小值為
          7
          7

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          實(shí)數(shù)x,y,z滿足x+y+z=0,且xyz>0,設(shè)M=
          1
          x
          +
          1
          y
          +
          1
          z
          ,則(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分,請(qǐng)?jiān)诖痤}紙指定區(qū)域內(nèi)作答,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
          A.選修4-1:(幾何證明選講)
          如圖,從O外一點(diǎn)P作圓O的兩條切線,切點(diǎn)分別為A,B,
          AB與OP交于點(diǎn)M,設(shè)CD為過(guò)點(diǎn)M且不過(guò)圓心O的一條弦,
          求證:O,C,P,D四點(diǎn)共圓.
          B.選修4-2:(矩陣與變換)
          已知二階矩陣M有特征值λ=3及對(duì)應(yīng)的一個(gè)特征向量e1=[
           
          1
          1
          ],并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成(9,15),求矩陣M.
          C.選修4-4:(坐標(biāo)系與參數(shù)方程)
          在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為p=2
          2
          sin(θ-
          π
          4
          ),以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
          x=1+
          4
          5
          t
          y=-1-
          3
          5
          t
          (t為參數(shù)),求直線l被曲線C所截得的弦長(zhǎng).
          D.選修4-5(不等式選講)
          已知實(shí)數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (本題滿分14分
          A.選修4-4:極坐標(biāo)與參數(shù)方程在極坐標(biāo)系中,直線l 的極坐標(biāo)方程為θ=
          π
          3
          (ρ∈R ),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C的參數(shù)方程為
          x=2cosα
          y=1+cos2α
          (α 參數(shù)).求直線l 和曲線C的交點(diǎn)P的直角坐標(biāo).
          B.選修4-5:不等式選講
          設(shè)實(shí)數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時(shí)x,y,z 的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省蘇南四校高三(上)12月月考數(shù)學(xué)試卷(解析版) 題型:填空題

          設(shè)正實(shí)數(shù)x,y,z滿足x+2y+z=1,則的最小值為   

          查看答案和解析>>

          同步練習(xí)冊(cè)答案