日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)數(shù)列{an}、{bn}、{cn}滿足:bn=an-an+2,cn=an+2an+1+3an+2(n=1,2,3,…),
          證明:{an}為等差數(shù)列的充分必要條件是{cn}為等差數(shù)列且bn≤bn+1(n=1,2,3,…)
          分析:本小題主要考查等差數(shù)列、充要條件等基礎(chǔ)知識,考查綜合運用數(shù)學知識分析問題、解決問題的能力.理解公差d的涵義,能把文字敘述轉(zhuǎn)化為符號關(guān)系式.利用遞推關(guān)系是解決數(shù)列的重要方法,要求考生熟練掌握等差數(shù)列的定義、通項公式及其由來.
          解答:證明:(必要性)
          設(shè)是{an}公差為d1的等差數(shù)列,則
          bn+1-bn=(an+1-an+3)-(an-an+2)=(an+1-an)-(an+3-an+2)=d1-d1=0
          所以bn≤bn+1(n=1,2,3,)成立.
          又cn+1-cn=(an+1-an)+2(an+2-an+1)+3(an+3-an+2)=d1+2d1+3d1=6d1(常數(shù))(n=1,2,3,)
          所以數(shù)列{cn}為等差數(shù)列.
          (充分性)
          設(shè)數(shù)列{cn}是公差為d2的等差數(shù)列,且bn≤bn+1(n=1,2,3,)
          ∵cn=an+2an+1+3an+2
          ∴cn+2=an+2+2an+3+3an+4
          ①-②得cn-cn+2=(an-an+2)+2(an+1-an+3)+3(an+2-an+4)=bn+2bn+1+3bn+2
          ∵cn-cn+2=(cn-cn+1)+(cn+1-cn+2)=-2d2
          ∴bn+2bn+1+3bn+2=-2d2
          從而有bn+1+2bn+2+3bn+3=-2d2
          ④-③得(bn+1-bn)+2(bn+2-bn+1)+3(bn+3-bn+2)=0⑤
          ∵bn+1-bn≥0,bn+2-bn+1≥0,bn+3-bn+2≥0,
          ∴由⑤得bn+1-bn=0(n=1,2,3,),
          由此不妨設(shè)bn=d3(n=1,2,3,)
          則an-an+2=d3(常數(shù)).
          由此cn=an+2an+1+3an+2=cn=4an+2an+1-3d3
          從而cn+1=4an+1+2an+2-5d3
          兩式相減得cn+1-cn=2an+1-an)-2d3
          因此an+1-an=
          1
          2
          (cc+1-cc)+d3=
          1
          2
          d2+d3
          (常數(shù))(n=1,2,3,)
          所以數(shù)列{an}公差等差數(shù)列.
          綜上所述::{an}為等差數(shù)列的充分必要條件是{cn}為等差數(shù)列且bn≤bn+1(n=1,2,3,…)
          點評:有關(guān)充要條件的證明問題,要分清哪個是條件,哪個是結(jié)論,由“條件”?“結(jié)論”是證明命題的充分性,由“結(jié)論”、“條件”是證明命題的必要性.證明要分兩個環(huán)節(jié):一是充分性;二是必要性.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          數(shù)列{an}的首項為1,前n項和是Sn,存在常數(shù)A,B使an+Sn=An+B對任意正整數(shù)n都成立.
          (1)設(shè)A=0,求證:數(shù)列{an}是等比數(shù)列;
          (2)設(shè)數(shù)列{an}是等差數(shù)列,若p<q,且
          1
          Sp
          +
          1
          Sq
          =
          1
          S11
          ,求p,q的值.
          (3)設(shè)A>0,A≠1,且
          an
          an+1
          ≤M
          對任意正整數(shù)n都成立,求M的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)數(shù)列{an}滿足a1=0,4an+1=4an+2
          4an+1
          +1
          ,令bn=
          4an+1

          (1)試判斷數(shù)列{bn}是否為等差數(shù)列?并求數(shù)列{bn}的通項公式;
          (2)令Tn=
          b1×b3×b5×…×b(2n-1)
          b2×b4×b6×…b2n
          ,是否存在實數(shù)a,使得不等式Tn
          bn+1
          2
          log2(a+1)
          對一切n∈N*都成立?若存在,求出a的取值范圍;若不存在,請說明理由.
          (3)比較bnbn+1bn+1bn的大小.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)數(shù)列{an}的前n項和為Sn,已知a1=1,a2=6,a3=11,且(5n-8)Sn+1-(5n+2)Sn=An+B,n=1,2,3…,其中A,B為常數(shù).數(shù)列{an}的通項公式為
          an=5n-4
          an=5n-4

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)數(shù)列{an}的前n項和為Sn,已知ban-2n=(b-1)Sn
          (1)證明:當b=2時,{an-n•2n-1}是等比數(shù)列;
          (2)求{an}的通項公式.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)數(shù)列{an}的通項公式為an=an+b(n∈N*,a>0).數(shù)列{bn}定義如下:對于正整數(shù)m,bm是使得不等式an≥m成立的所有n中的最小值.
          (1)若a=2,b=-3,求b10;
          (2)若a=2,b=-1,求數(shù)列{bm}的前2m項和公式.

          查看答案和解析>>

          同步練習冊答案