日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)z、z1、z2、z3是復(fù)數(shù),下列四個(gè)命題
          ①?gòu)?fù)數(shù)z=(a-b)+(a+b)i(a、b∈R),當(dāng)a=b時(shí),z為純虛數(shù);
          ②若(z1-z22+(z2-z32=0,那么z1=z2=z3
          ③如果z1-z2<0,那么z1<z2;
          z+
          .
          z
          為實(shí)數(shù),且|
          .
          z
          |=|z|

          以上命題中,正確命題的個(gè)數(shù)為( 。
          分析:當(dāng)a=b≠0時(shí),z為純虛數(shù);故①不正確,有可能做出的(z1-z22與(z2-z32互為相反數(shù),故②不正確,當(dāng)兩個(gè)復(fù)數(shù)是虛數(shù)時(shí),不能比較大小,故③不正確,根據(jù)另一個(gè)復(fù)數(shù)與它的共軛復(fù)數(shù)和是實(shí)部的二倍,知z+
          .
          z
          為實(shí)數(shù),且|
          .
          z
          |=|z|
          .故④正確.
          解答:解:①?gòu)?fù)數(shù)z=(a-b)+(a+b)i(a、b∈R),當(dāng)a=b≠0時(shí),z為純虛數(shù);故①不正確,
          ②若(z1-z22+(z2-z32=0,那么z1=z2=z3;有可能做出的(z1-z22與(z2-z32互為相反數(shù),故②不正確,
          ③如果z1-z2<0,那么z1<z2;當(dāng)兩個(gè)復(fù)數(shù)是虛數(shù)時(shí),不能比較大小,故③不正確,
          ④根據(jù)另一個(gè)復(fù)數(shù)與它的共軛復(fù)數(shù)和是實(shí)部的二倍,知z+
          .
          z
          為實(shí)數(shù),且|
          .
          z
          |=|z|
          .故④正確,
          綜上可知只有一個(gè)命題正確,
          故選B.
          點(diǎn)評(píng):本題考查復(fù)數(shù)的概念,涉及到純虛數(shù),共軛復(fù)數(shù),比較大小,本題解題的關(guān)鍵是理解復(fù)數(shù)的基本概念,本題是一個(gè)基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

          閱讀:設(shè)Z點(diǎn)的坐標(biāo)(a,b),r=|
          OZ
          |,θ是以x軸的非負(fù)半軸為始邊、以O(shè)Z所在的射線為終邊的角,復(fù)數(shù)z=a+bi還可以表示為z=r(cosθ+isinθ),這個(gè)表達(dá)式叫做復(fù)數(shù)z的三角形式,其中,r叫做復(fù)數(shù)z的模,當(dāng)r≠0時(shí),θ叫做復(fù)數(shù)z的幅角,復(fù)數(shù)0的幅角是任意的,當(dāng)0≤θ<2π時(shí),θ叫做復(fù)數(shù)z的幅角主值,記作argz.
          根據(jù)上面所給出的概念,請(qǐng)解決以下問(wèn)題:
          (1)設(shè)z=a+bi=r(cosθ+isinθ) (a、b∈R,r≥0),請(qǐng)寫(xiě)出復(fù)數(shù)的三角形式與代數(shù)形式相互之間的轉(zhuǎn)換關(guān)系式;
          (2)設(shè)z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),探索三角形式下的復(fù)數(shù)乘法、除法的運(yùn)算法則,請(qǐng)寫(xiě)出三角形式下的復(fù)數(shù)乘法、除法的運(yùn)算法則.(結(jié)論不需要證明)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2006•嘉定區(qū)二模)已知復(fù)數(shù)z1=sin2θ+i,z2=cos2θ+icos2θ,其中θ∈(0,2π).設(shè)z=z1+z2,且復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)的點(diǎn)P在直線x+2y-2=0上,求θ的值所組成的集合.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

          設(shè)z、z1、z2、z3是復(fù)數(shù),下列四個(gè)命題
          ①?gòu)?fù)數(shù)z=(a-b)+(a+b)i(a、b∈R),當(dāng)a=b時(shí),z為純虛數(shù);
          ②若(z1-z22+(z2-z32=0,那么z1=z2=z3;
          ③如果z1-z2<0,那么z1<z2;
          數(shù)學(xué)公式為實(shí)數(shù),且數(shù)學(xué)公式
          以上命題中,正確命題的個(gè)數(shù)為


          1. A.
            0個(gè)
          2. B.
            1個(gè)
          3. C.
            2個(gè)
          4. D.
            3個(gè)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          設(shè)z、z1、z2、z3是復(fù)數(shù),下列四個(gè)命題
          ①?gòu)?fù)數(shù)z=(a-b)+(a+b)i(a、b∈R),當(dāng)a=b時(shí),z為純虛數(shù);
          ②若(z1-z22+(z2-z32=0,那么z1=z2=z3;
          ③如果z1-z2<0,那么z1<z2;
          z+
          .
          z
          為實(shí)數(shù),且|
          .
          z
          |=|z|

          以上命題中,正確命題的個(gè)數(shù)為(  )
          A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案