日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=
          (1)討論f(x)的單調(diào)性;
          (2)設(shè)a>0,證明:當(dāng)0<x<a時(shí),f(x+a)<f(a﹣x);
          (3)設(shè)x1 , x2是f(x)的兩個(gè)零點(diǎn),證明:f′( )>0.

          【答案】
          (1)解:f(x)的定義域是(0,+∞),

          f′(x)=x+1﹣a﹣ = ,

          若a≤0,則f′(x)>0,此時(shí)f(x)在(0,+∞)遞增,

          若a>0,則由f′(x)=0,解得:x=a,

          當(dāng)0<x<a時(shí),f′(x)<0,

          當(dāng)x>a時(shí),f′(x)>0,

          此時(shí)f(x)在(0,a)遞減,在(a,+∞)遞增


          (2)解:令g(x)=f(a+x)﹣f(a﹣x),

          則g(x)=2x﹣aln(a+x)+aln(a﹣x),

          g′(x)=2﹣ =﹣ ,

          當(dāng)0<x<a時(shí),g′(x)<0,g(x)在(0,a)遞減,

          而g(0)=0,故g(x)<g(0)=0,

          故0<x<a時(shí),f(a+x)<f(a﹣x)


          (3)解:證明:由(1)得,a≤0時(shí),函數(shù)y=f(x)至多有1個(gè)零點(diǎn),

          故a>0,從而f(x)的最小值是f(a),且f(a)<0,

          不妨設(shè)0<x1<x2,則0<x1<a<x2

          ∴0<a﹣x1<a,

          由(2)得:f(2a﹣x1)=f(a+a﹣x1)<f(x1)=0,

          從而x2>2a﹣x1,于是 >a,

          由(1)得:f′( )>0


          【解析】(1)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)性即可;(2)令g(x)=f(a+x)﹣f(a﹣x),求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)區(qū)間,從而證出結(jié)論即可;(3)得到a>0,從而f(x)的最小值是f(a),且f(a)<0,不妨設(shè)0<x1<x2 , 則0<x1<a<x2 , 得到0<a﹣x1<a,根據(jù)(1),(2)結(jié)論判斷即可.
          【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)列{an}中,a1=1,an﹣an+1=anan+1 , n∈N*
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)Sn為{an}的前n項(xiàng)和,bn=S2n﹣Sn , 求bn的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知f(x)= sinxcosx﹣sin2x,把f(x)的圖象向右平移 個(gè)單位,再向上平移2個(gè)單位,得到y(tǒng)=g(x)的圖象,若對(duì)任意實(shí)數(shù)x,都有g(shù)(α﹣x)=g(α+x)成立,則g(α+ )+g( )=(
          A.4
          B.3
          C.2
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.E為棱AD的中點(diǎn),異面直線PA與CD所成的角為90°.
          (1)在平面PAB內(nèi)找一點(diǎn)M,使得直線CM∥平面PBE,并說明理由;
          (2)若二面角P﹣CD﹣A的大小為45°,求二面角P﹣CE﹣B的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若四面體ABCD的三組對(duì)棱分別相等,即AB=CD,AC=BD,AD=BC,則(寫出所有正確結(jié)論編號(hào)) ①四面體ABCD每組對(duì)棱相互垂直
          ②四面體ABCD每個(gè)面的面積相等
          ③從四面體ABCD每個(gè)頂點(diǎn)出發(fā)的三條棱兩兩夾角之和大于90°而小于180°
          ④連接四面體ABCD每組對(duì)棱中點(diǎn)的線段互垂直平分
          ⑤從四面體ABCD每個(gè)頂點(diǎn)出發(fā)的三條棱的長(zhǎng)可作為一個(gè)三角形的三邊長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直三棱柱 中, ,A1B與AB1交于點(diǎn)D,A1C與AC1交于點(diǎn)E.求證:

          (1)DE∥平面B1BCC1;
          (2)平面 平面

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè) .有序數(shù)組 經(jīng)m次變換后得到數(shù)組 ,其中 1,2, ,n), ,
          例如:有序數(shù)組 經(jīng)1次變換后得到數(shù)組 ,即 ;經(jīng)第2次變換后得到數(shù)組
          (1)若 ,求 的值;
          (2)求證: ,其中 1,2, ,n.(注:當(dāng) 時(shí), , 1,2, ,n,則 .)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知四棱錐P﹣ABCD的底面ABCD是菱形,∠ABC=60°,AB=PC=2,

          (1)求證:平面PAD⊥平面ABCD;
          (2)求二面角A﹣PC﹣B的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知F1 , F2分別是橢圓C: =1(a>b>0)的兩個(gè)焦點(diǎn),P(1, )是橢圓上一點(diǎn),且 |PF1|,|F1F2|, |PF2|成等差數(shù)列.
          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)已知?jiǎng)又本l過點(diǎn)F2 , 且與橢圓C交于A、B兩點(diǎn),試問x軸上是否存在定點(diǎn)Q,使得 =﹣ 恒成立?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案