日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)在[1,+∞)上是增函數(shù).
          (1)求正實數(shù)a的取值范圍;
          (2)設(shè)b>0,a>1,求證:
          【答案】分析:(1)求出f(x)的導(dǎo)函數(shù),因為函數(shù)在[1,+∞)上是增函數(shù),即導(dǎo)函數(shù)大于等于0對x屬于[1,+∞)恒成立,令導(dǎo)函數(shù)大于等于0列出不等式,解出a大于等于x的倒數(shù),求出x倒數(shù)的最大值即可得到實數(shù)a的范圍;
          (2)設(shè)x等于,由b大于0,a大于1,得出大于1,根據(jù)函數(shù)在[1,+∞)上是增函數(shù),得到f()大于f(1),化簡可得;設(shè)G(x)=x-lnx,且x大于1,求出G(x)的導(dǎo)函數(shù),根據(jù)x大于1得到導(dǎo)函數(shù)大于0,所以G(x)為增函數(shù),由x大于1,得到G(x)大于G(1)即x大于lnx,即可得到,綜上,得證.
          解答:解:(1)對x∈[1,+∞)恒成立,
          對x∈[1,+∞)恒成立,
          ,
          ∴a≥1為所求;
          (2)取,
          ,
          一方面,由(1)知在[1,+∞)上是增函數(shù),


          ;
          另一方面,設(shè)函數(shù)G(x)=x-lnx(x>1),
          ,
          ∴G(x)在(1,+∞)上是增函數(shù)且在x=x處連續(xù),又G(1)=1>0,
          ∴當(dāng)x>1時,G(x)>G(1)>0,
          ∴x>lnx即,
          綜上所述,
          點(diǎn)評:此題考查學(xué)生會利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,靈活運(yùn)用函數(shù)的單調(diào)性解決實際問題,是一道綜合題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:廣東省同步題 題型:解答題

          設(shè)函數(shù)在[1,+∞)上是增函數(shù).
          (1)求正實數(shù)a的取值范圍;
          (2)設(shè)b>0,a>1,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:模擬題 題型:解答題

          設(shè)函數(shù)在[1,+∞)上是增函數(shù),
          (1)求正實數(shù)a的取值范圍;
          (2)設(shè)b>0,a>1,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:《第1章 導(dǎo)數(shù)及其應(yīng)用》2010年單元測試卷(2)(解析版) 題型:解答題

          設(shè)函數(shù)在[1,+∞)上是增函數(shù).
          (1)求正實數(shù)a的取值范圍;
          (2)設(shè)b>0,a>1,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:高考數(shù)學(xué)最后沖刺必讀題解析30講(29)(解析版) 題型:解答題

          設(shè)函數(shù)在[1,+∞)上是增函數(shù).
          (1)求正實數(shù)a的取值范圍;
          (2)設(shè)b>0,a>1,求證:

          查看答案和解析>>

          同步練習(xí)冊答案