日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,橢圓C:(a>b>0)的一個焦點(diǎn)為F(1,0),且過點(diǎn)(2,0).
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)若AB為垂直于x軸的動弦,直線l:x=4與x軸交于點(diǎn)N,直線AF與BN交于點(diǎn)M.
          (。┣笞C:點(diǎn)M恒在橢圓C上;
          (ⅱ)求△AMN面積的最大值.

          【答案】分析:(Ⅰ)由題設(shè)a=2,c=1,從而b2=a2-c2=3,即可得橢圓C前方程.
          (Ⅱ)(i)由題意得F(1,0),N(4,0).設(shè)A(m,n),則B(m,-n)(n≠0),=1.
          由題意知AF與BN的方程分別為:n(x-1)-(m-1)y=0,n(x-4)-(m-4)y=0.由此入手能夠推出點(diǎn)M恒在橢圓G上.
          (ⅱ)設(shè)AM的方程為x=ty+1,代入=1得(3t2+4)y2+6ty-9=0.設(shè)A(x1,y1),M(x2,y2),利用根與系數(shù)的關(guān)系能夠求出△AMN面積的最大值.
          解答:解:
          (Ⅰ)由題設(shè)a=2,c=1,從而b2=a2-c2=3,
          所以橢圓C前方程為
          (Ⅱ)(i)由題意得F(1,0),N(4,0).
          設(shè)A(m,n),則B(m,-n)(n≠0),=1.①
          AF與BN的方程分別為:n(x-1)-(m-1)y=0,
          n(x-4)-(m-4)y=0.
          設(shè)M(x,y),則有n(x-1)-(m-1)y=0,②
          n(x-4)+(m-4)y=0,③
          由②,③得
          x=

          =
          =
          =
          =1
          所以點(diǎn)M恒在橢圓G上.
          (ⅱ)設(shè)AM的方程為x=ty+1,
          代入=1,得(3t2+4)y2+6ty-9=0.
          設(shè)A(x1,y1),M(x2,y2),則有.=,令3t2+4=λ(λ≥4),則|y1-y2|==
          ∵λ≥4,,∴當(dāng),即λ=4,t=0時,|y1-y2|有最大值3,此時AM過點(diǎn)F,△AMN的面積有最大值
          點(diǎn)評:本題主要考查直線與橢圓的位置關(guān)系、軌跡方程、不等式等基本知識,考查運(yùn)算能力和綜合解題能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,橢圓C:數(shù)學(xué)公式(a>b>0)的一個焦點(diǎn)是F(-數(shù)學(xué)公式,0),離心率e=數(shù)學(xué)公式,過點(diǎn)A(0,-2)且不與y軸重合的直線l與橢圓C相交于不同的兩點(diǎn)P、Q
          (1)求橢圓C的方程;
          (2)若點(diǎn)F到直線l的距離為2,求直線l的方程;
          (3)問在y軸上是否存在一個定點(diǎn)B,使得直線PB與橢圓C的另一個交點(diǎn)R是點(diǎn)Q關(guān)于y軸的對稱點(diǎn)?若存在,求出定點(diǎn)B的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省珠海一中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

          如圖,橢圓C,a,b為常數(shù)),動圓,b<t1<a.點(diǎn)A1,A2分別為C的左,右頂點(diǎn),C1與C相交于A,B,C,D四點(diǎn).
          (Ⅰ)求直線AA1與直線A2B交點(diǎn)M的軌跡方程;
          (Ⅱ)設(shè)動圓與C相交A′,B′,C′,D′四點(diǎn),其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等,證明:為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年北京市昌平區(qū)高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

          如圖,橢圓C:(a>b>0)的一個焦點(diǎn)為F(1,0),且過點(diǎn)(2,0).
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)若AB為垂直于x軸的動弦,直線l:x=4與x軸交于點(diǎn)N,直線AF與BN交于點(diǎn)M.
             (ⅰ)求證:點(diǎn)M恒在橢圓C上;
             (ⅱ)求△AMN面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2008年福建省高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          如圖,橢圓C:(a>b>0)的一個焦點(diǎn)為F(1,0),且過點(diǎn)(2,0).
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)若AB為垂直于x軸的動弦,直線l:x=4與x軸交于點(diǎn)N,直線AF與BN交于點(diǎn)M.
          (。┣笞C:點(diǎn)M恒在橢圓C上;
          (ⅱ)求△AMN面積的最大值.

          查看答案和解析>>

          同步練習(xí)冊答案