日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2007•揭陽二模)如圖(1)示,定義在D上的函數(shù)f(x),如果滿足:對?x∈D,?常數(shù)A,都有f(x)≥A成立,則稱函數(shù)f(x)在D上有下界,其中A稱為函數(shù)的下界.(提示:圖(1)、(2)中的常數(shù)A、B可以是正數(shù),也可以是負(fù)數(shù)或零)

          (Ⅰ)試判斷函數(shù)f(x)=x3+
          48
          x
          在(0,+∞)上是否有下界?并說明理由;
          (Ⅱ)又如具有如圖(2)特征的函數(shù)稱為在D上有上界.請你類比函數(shù)有下界的定義,給出函數(shù)f(x)在D上有上界的定義,并判斷(Ⅰ)中的函數(shù)在(-∞,0)上是否有上界?并說明理由;
          (Ⅲ)已知某質(zhì)點的運動方程為S(t)=at-2
          t+1
          ,要使在t∈[0,+∞)上的每一時刻該質(zhì)點的瞬時速度是以A=
          1
          2
          為下界的函數(shù),求實數(shù)a的取值范圍.
          分析:(I)解法1:利用導(dǎo)數(shù)確定函數(shù)的最小值,即可得出結(jié)論;
          解法2:利用基本不等式求最值,即可得出結(jié)論;
          (II)類比函數(shù)有下界的定義,看過函數(shù)有上界的定義,并可判斷(Ⅰ)中的函數(shù)在(-∞,0)上有上界;
          (III)求導(dǎo)函數(shù),依題意得對?t∈[0,+∞)有a-
          1
          t+1
          1
          2
          ,分離參數(shù)求最值,即可得出結(jié)論.
          解答:解:(Ⅰ)
          解法1:∵f′(x)=3x2-
          48
          x2
          ,由f'(x)=0得3x2-
          48
          x2
          =0
          ,x4=16,∵x∈(0,+∞),
          ∴x=2,-------------------------------(2分)
          ∵當(dāng)0<x<2時,f'(x)<0,∴函數(shù)f(x)在(0,2)上是減函數(shù);
          當(dāng)x>2時,f'(x)>0,∴函數(shù)f(x)在(2,+∞)上是增函數(shù);
          ∴x=2是函數(shù)的在區(qū)間(0,+∞)上的最小值點,f(x)min=f(2)=8+
          48
          2
          =32

          ∴對?x∈(0,+∞),都有f(x)≥32,-----------------------------------(4分)
          即在區(qū)間(0,+∞)上存在常數(shù)A=32,使得對?x∈(0,+∞)都有f(x)≥A成立,
          ∴函數(shù)f(x)=x3+
          48
          x
          在(0,+∞)上有下界.---------------------------(5分)
          解法2:∵x>0∴f(x)=x3+
          48
          x
          =x3+
          16
          x
          +
          16
          x
          +
          16
          x
          ≥4
          4x3
          16
          x
          16
          x
          16
          x
          =32

          當(dāng)且僅當(dāng)x3=
          16
          x
          即x=2時“=”成立
          ∴對?x∈(0,+∞),都有f(x)≥32,
          即在區(qū)間(0,+∞)上存在常數(shù)A=32,使得對?x∈(0,+∞)都有f(x)≥A成立,
          ∴函數(shù)f(x)=x3+
          48
          x
          在(0,+∞)上有下界.]
          (Ⅱ)類比函數(shù)有下界的定義,函數(shù)有上界可以這樣定義:
          定義在D上的函數(shù)f(x),如果滿足:對?x∈D,?常數(shù)B,都有f(x)≤B成立,則稱函數(shù)f(x)在D上有上界,其中B稱為函數(shù)的上界.---------------------------(8分)
          設(shè)x<0,則-x>0,由(Ⅰ)知,對?x∈(0,+∞),都有f(x)≥32,
          ∴f(-x)≥32,∵函數(shù)f(x)=x3+
          48
          x
          為奇函數(shù),∴f(-x)=-f(x)
          ∴-f(x)≥32,∴f(x)≤-32------------------------------------------(9分)
          即存在常數(shù)B=-32,對?x∈(-∞,0),都有f(x)≤B,
          ∴函數(shù)f(x)=x3+
          48
          x
          在(-∞,0)上有上界.---------------------------(10分)
          (Ⅲ)質(zhì)點在t∈[0,+∞)上的每一時刻的瞬時速度v=S′(t)=a-
          1
          t+1
          ----------------(11分)
          依題意得對?t∈[0,+∞)有a-
          1
          t+1
          1
          2

          a≥
          1
          t+1
          +
          1
          2
          對?t∈[0,+∞)恒成立
          g(t)=
          1
          t+1
          +
          1
          2
          ,
          ∵函數(shù)g(t)在[0,+∞)上為減函數(shù).
          g(t)max=g(0)=1+
          1
          2
          =
          3
          2

          a≥
          3
          2
          .------------------------------------------------(14分)
          點評:本題考查新定義,考查學(xué)生分析解決問題的能力,考查導(dǎo)數(shù)知識的運用,考查函數(shù)的最值,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2007•揭陽二模)如圖(1)示,定義在D上的函數(shù)f(x),如果滿足:對?x∈D,?常數(shù)A,都有f(x)≥A成立,則稱函數(shù)f(x)在D上有下界,其中A稱為函數(shù)的下界.(提示:圖(1)、(2)中的常數(shù)A、B可以是正數(shù),也可以是負(fù)數(shù)或零)  

          (Ⅰ)試判斷函數(shù)f(x)=x3+
          48
          x
          在(0,+∞)上是否有下界?并說明理由;
          (Ⅱ)又如具有如圖(2)特征的函數(shù)稱為在D上有上界.請你類比函數(shù)有下界的定義,給出函數(shù)f(x)在D上有上界的定義,并判斷(Ⅰ)中的函數(shù)在(-∞,0)上是否有上界?并說明理由;
          (Ⅲ)若函數(shù)f(x)在D上既有上界又有下界,則稱函數(shù)f(x)在D上有界,函數(shù)f(x)叫做有界函數(shù).試探究函數(shù)f(x)=ax3+
          b
          x
          (a>0,b>0a,b是常數(shù))是否是[m,n](m>0,n>0,m、n是常數(shù))上的有界函數(shù)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2007•揭陽二模)下圖是用同樣規(guī)格的黑、白兩色正方形瓷磚鋪設(shè)的若干圖案,則按此規(guī)律第n個圖案中需用黑色瓷磚
          4n+8
          4n+8
          塊.(用含n的代數(shù)式表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2007•揭陽二模)已知函數(shù)f(x)=logax(a>0,a≠1)的圖象如右圖示,函數(shù)y=g(x)的圖象與y=f(x)的圖象關(guān)于直線y=x對稱,則函數(shù)y=g(x)的解析式為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2007•揭陽二模)已知點P(x,y)的坐標(biāo)滿足條件
          x+y≤4
          y≥x
          x≥1.
          則x2+y2的最大值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2007•揭陽二模)某地區(qū)的一種特色水果上市時間僅能持續(xù)幾個月,預(yù)測上市初期和后期會因供不應(yīng)求使價格呈連續(xù)上漲的態(tài)勢,而中期又將出現(xiàn)供大于求使價格連續(xù)下跌,為準(zhǔn)確研究其價格走勢,下面給出的四個價格模擬函數(shù)中合適的是(其中p,q為常數(shù),且q>1,x∈[0,5],x=0表示4月1日,x=1表示5月1日,…以此類推)( 。

          查看答案和解析>>

          同步練習(xí)冊答案