日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)l使得對(duì)于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù).現(xiàn)給出下列命題:
          ①函數(shù)f(x)=2-x為R上的1高調(diào)函數(shù);
          ②函數(shù)f(x)=sin2x不是R上的π高調(diào)函數(shù);
          ③如果定義域?yàn)閇-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上m高調(diào)函數(shù),那么實(shí)數(shù)m 的取值范圍是[2,+∞);
          ④函數(shù)f(x)=lg(|x-2|+1)為[1,+∞)上的2高調(diào)函數(shù).
          其中真命題為
          ③④
          ③④
          (填序號(hào)).
          分析:①函數(shù)f(x)=2-x為R上的遞減函數(shù),可判斷①的正誤;
          ②由正弦函數(shù)的性質(zhì)知函數(shù)f(x)=sin2x為R上的π高調(diào)函數(shù),從而可判斷②的正誤;
          ③函數(shù)f(x)=x2為[-1,+∞)上m高調(diào)函數(shù),只有[-1,1]上至少需要加2,從而可求實(shí)數(shù)m 的取值范圍;
          ④f(x+2)=lg(|x|+1)≥f(x),知函數(shù)f(x)=lg(|x-2|+1)為[1,+∞)上的2高調(diào)函數(shù),從而可知④的正誤.
          解答:解:①∵函數(shù)f(x)=2-x為R上的遞減函數(shù),故不存在x+l∈D,使得f(x+l)≥f(x),故①不正確;
          ②∵sin2(x+π)≥sin2x,
          ∴函數(shù)f(x)=sin2x為R上的π高調(diào)函數(shù),故②錯(cuò)誤;
          ③如果定義域?yàn)閇-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上m高調(diào)函數(shù),
          只有[-1,1]上至少需要加2,
          ∴實(shí)數(shù)m的取值范圍是[2,+∞),故③正確;
          ④∵f(x)=lg(|x-2|+1),x∈[1,+∞),
          ∴f(x+2)=lg(|x|+1)≥f(x),
          ∴函數(shù)f(x)=lg(|x-2|+1)為[1,+∞)上的2高調(diào)函數(shù),故④正確;
          綜上可知,真命題為③④.
          故答案為:③④.
          點(diǎn)評(píng):本題考查基本初等函數(shù)的性質(zhì),是一個(gè)特新定義問題,注意對(duì)于條件中所給的一個(gè)新的概念,要注意理解,考查抽象思維與綜合運(yùn)算能力,屬于難題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-
          3
          2
          )與b=f(
          15
          2
          )的大小關(guān)系為
          a>b
          a>b

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          函數(shù)f(x)的定義域?yàn)镈,若對(duì)于任意x1,x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)為定義在[0,1]上的非減函數(shù),且滿足以下三個(gè)條件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③當(dāng)x∈[0,
          1
          4
          ]
          時(shí),f(x)≥2x恒成立.則f(
          3
          7
          )+f(
          5
          9
          )
          =
          1
          1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:填空題

          設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-數(shù)學(xué)公式)與b=f(數(shù)學(xué)公式)的大小關(guān)系為________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省蚌埠二中高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

          設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-)與b=f()的大小關(guān)系為   

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:山東省月考題 題型:填空題

          設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x﹣cosx,則a=f(﹣)與b=f()的大小關(guān)系為(    ).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案