日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題滿分14分)

          已知函數(shù)

          (1)當(dāng)a = 2時,求f (x) 的最小值;

          (2)若f (x)在[1,e]上為單調(diào)減函數(shù),求實數(shù)a的取值范圍.

           

          【答案】

          (1)5-3ln2;(2)a≤。

          【解析】

          試題分析:(1) 當(dāng)a = 2時,f (x) =" 2x+" -3lnx

          f' (x) = 2-= ………………2分

          令 f' (x) = 0得x = 2或-(∵x>0,舍去負(fù)值)……………………3分

          x

          (0,2)

          2

          (2,+ ¥)

          f' (x)

          0

          +

          f (x)

          5-3ln2

                                              ………………………………………5分

          ∴ 當(dāng)a = 2時,函數(shù) f (x) 的最小值為5-3ln2.………………… 6分

          (2)∵ f' (x) =

          令 h(x) = ax 2-3x-a = a(x-)2,……………………8分

          要使f (x)在[1,e]上為單調(diào)遞減函數(shù),只需f' (x)在[1,e]內(nèi)滿足: f' (x) ≤ 0恒成立,

          ∵ h (1) = -3<0

          ∴ h (e) = ae2-3e-a≤0,∴a≤………………11分

          ①當(dāng)0≤a≤時,f' (x) ≤ 0恒成立

          ②當(dāng)a < 0時,x=  Ï [1,e], ∴h(x)<0 (x Î [ 1, e])

          ∴ f' (x) <0, 符合題意.     ………………………………………13分

          綜上可知,當(dāng)a≤時,f (x) 在[1,e]上為單調(diào)函數(shù).…… 14分

          (分離變量法,相應(yīng)得分)

          考點:利用導(dǎo)數(shù)研究函數(shù)的最值;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;

          點評:本題需要注意的是:要滿足f (x)在[1,e]上為單調(diào)減函數(shù),需滿足f'(x) ≤ 0在[1,e]上恒成立且不恒為0.不少同學(xué)都錯認(rèn)為“需滿足f'(x) <0在[1,e]上恒成立”

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分14分
          A.選修4-4:極坐標(biāo)與參數(shù)方程在極坐標(biāo)系中,直線l 的極坐標(biāo)方程為θ=
          π
          3
          (ρ∈R ),以極點為坐標(biāo)原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C的參數(shù)方程為
          x=2cosα
          y=1+cos2α
          (α 參數(shù)).求直線l 和曲線C的交點P的直角坐標(biāo).
          B.選修4-5:不等式選講
          設(shè)實數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時x,y,z 的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AEEBBC=2,上的點,且BF⊥平面ACE

          (1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題

          (本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

          (Ⅰ)若AB=[0,3],求實數(shù)m的值

          (Ⅱ)若ACRB,求實數(shù)m的取值范圍

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題

          (本題滿分14分)

          已知點是⊙上的任意一點,過垂直軸于,動點滿足

          (1)求動點的軌跡方程; 

          (2)已知點,在動點的軌跡上是否存在兩個不重合的兩點,使 (O是坐標(biāo)原點),若存在,求出直線的方程,若不存在,請說明理由。

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題

          (本題滿分14分)已知函數(shù).

          (1)求函數(shù)的定義域;

          (2)判斷的奇偶性;

          (3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使

          ;如果沒有,請說明理由?(注:區(qū)間的長度為).

           

          查看答案和解析>>

          同步練習(xí)冊答案