【題目】直三棱柱中,底面
為等腰直角三角形,
,
,
,
是側(cè)棱
上一點(diǎn),設(shè)
.
(1) 若,求
的值;
(2) 若,求直線
與平面
所成的角.
【答案】(1)(2)
【解析】
試題(1)以為坐標(biāo)原點(diǎn),以射線
、
、
分別為
、
、
軸建立空間直角坐標(biāo)系,求出
,
,利用
,求出
的值;(2)求出直線
的方向向量與平面
的法向量,求出向量的夾角的余弦值可得結(jié)果.
試題解析:(1)以為坐標(biāo)原點(diǎn),以射線
、
、
分別為
、
、
軸建立空間直角坐標(biāo)系,如圖所示,
則,
,
,
,
由得
,即
解得.
(2) 解法一:此時
設(shè)平面的一個法向量為
由得
所以
設(shè)直線與平面
所成的角為
則
所以直線與平面
所成的角為
解法二:聯(lián)結(jié),則
,
,
平面
平面
所以是直線
與平面
所成的角;
在中,
所以
所以
所以直線與平面
所成的角為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
討論函數(shù)
的單調(diào)性;
設(shè)
,對任意
的恒成立,求整數(shù)
的最大值;
求證:當(dāng)
時,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年以來,世界經(jīng)濟(jì)和貿(mào)易增長放緩,中美經(jīng)貿(mào)摩擦影響持續(xù)顯現(xiàn),我國對外貿(mào)易仍然表現(xiàn)出很強(qiáng)的韌性.今年以來,商務(wù)部會同各省市全面貫徹落實(shí)穩(wěn)外貿(mào)決策部署,出臺了一系列政策舉措,全力營造法治化國際化便利化的營商環(huán)境,不斷提高貿(mào)易便利化水平,外貿(mào)穩(wěn)規(guī)模提質(zhì)量轉(zhuǎn)動力取得階段性成效,進(jìn)出口保持穩(wěn)中提質(zhì)的發(fā)展勢頭,如圖是某省近五年進(jìn)出口情況統(tǒng)計圖,下列描述錯誤的是( )
A.這五年,2015年出口額最少B.這五年,出口總額比進(jìn)口總額多
C.這五年,出口增速前四年逐年下降D.這五年,2019年進(jìn)口增速最快
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線上的點(diǎn)到點(diǎn)
的距離比到直線
的距離小
,
為坐標(biāo)原點(diǎn).
(1)過點(diǎn)且傾斜角為
的直線與曲線
交于
、
兩點(diǎn),求
的面積;
(2)設(shè)為曲線
上任意一點(diǎn),點(diǎn)
,是否存在垂直于
軸的直線
,使得
被以
為直徑的圓截得的弦長恒為定值?若存在,求出
的方程和定值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
,
.
(1)當(dāng)時,求函數(shù)
的單調(diào)區(qū)間;
(2)若曲線在點(diǎn)(1,0)處的切線為l : x+y-1=0,求a,b的值;
(3)若恒成立,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,如下圖就是在平面直角坐標(biāo)系的“心形曲線”,又名RC心形線.如果以坐標(biāo)原點(diǎn)為極點(diǎn),以
軸正半軸為極軸,建立極坐標(biāo)系,其RC心形線的極坐標(biāo)方程為
.
(1)求RC心形線的直角坐標(biāo)方程;
(2)已知與直線
(
為參數(shù)),若直線
與RC心形線交于兩點(diǎn)
,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防新型冠狀病毒的傳染,人員之間需要保持一米以上的安全距離.某公司會議室共有四行四列座椅,并且相鄰兩個座椅之間的距離超過一米,為了保證更加安全,公司規(guī)定在此會議室開會時,每一行、每一列均不能有連續(xù)三人就座.例如下圖中第一列所示情況不滿足條件(其中“√”表示就座人員).根據(jù)該公司要求,該會議室最多可容納的就座人數(shù)為( )
A.9B.10C.11D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,若
在
上有零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com