日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>

        1. (Ⅰ)求的極值點(diǎn);
          (Ⅱ)當(dāng)時(shí),若方程上有兩個(gè)實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍;
          (Ⅲ)證明:當(dāng)時(shí),。
          (Ⅰ)①時(shí),, ∴在(-1,+∞)上是增函數(shù),函數(shù)既無(wú)極大值點(diǎn),也無(wú)極小值點(diǎn);②當(dāng)時(shí),上遞增,在單調(diào)遞減,函數(shù)的極大值點(diǎn)為-1,無(wú)極小值點(diǎn);③當(dāng)時(shí),上遞減,在單調(diào)遞增,函數(shù)的極小值點(diǎn)為-1,無(wú)極大值點(diǎn);(Ⅱ)當(dāng)時(shí),方程有兩解;(Ⅲ)詳見(jiàn)解析.

          試題分析:(Ⅰ)求的極值點(diǎn),先求函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032710596546.png" style="vertical-align:middle;" />,然后可對(duì)函數(shù)求導(dǎo)數(shù)得,令導(dǎo)數(shù)等零,求出的解,再利用導(dǎo)數(shù)大于0,導(dǎo)數(shù)小于0,判斷函數(shù)的單調(diào)區(qū)間,從而確定極值點(diǎn),但本題由于含有參數(shù),需對(duì)討論(Ⅱ)當(dāng)時(shí),若方程上有兩個(gè)實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍,由(Ⅰ)知,上單調(diào)遞增,在上單調(diào)遞減,而,由此可得實(shí)數(shù)t的取值范圍;(Ⅲ)根據(jù)要證明當(dāng)時(shí),,直接證明比較困難,可以利用分析法來(lái)證明本題,從結(jié)論入手,要證結(jié)論只要證明后面這個(gè)式子成立,兩邊取對(duì)數(shù),構(gòu)造函數(shù),問(wèn)題轉(zhuǎn)化為只要證明函數(shù)在一個(gè)范圍上成立,利用導(dǎo)數(shù)證明函數(shù)的性質(zhì).
          試題解析:(Ⅰ)(1分)
          時(shí),, ∴在(-1,+∞)上是增函數(shù),函數(shù)既無(wú)極大值點(diǎn),也無(wú)極小值點(diǎn)。(2分)
          ②當(dāng)時(shí),上遞增,在單調(diào)遞減,函數(shù)的極大值點(diǎn)為-1,無(wú)極小值點(diǎn)(3分)
          ③當(dāng)時(shí),上遞減,在單調(diào)遞增,函數(shù)的極小值點(diǎn)為-1,無(wú)極大值點(diǎn)(4分)
          (Ⅱ)由(Ⅰ)知,上單調(diào)遞增,在上單調(diào)遞減,
          ,
          ,∴當(dāng)時(shí),方程有兩解 (8分)
          (Ⅲ)要證:只須證
          只須證:
          設(shè)
          ,(10分)
          由(1)知單調(diào)遞減,(12分)
          ,即是減函數(shù),而m>n,
          ,故原不等式成立。 (14分)
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù)
          (1)證明函數(shù)在區(qū)間上單調(diào)遞減;
          (2)若不等式對(duì)任意的都成立,(其中是自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知,函數(shù)
          (Ⅰ)當(dāng)時(shí),求的最小值;
          (Ⅱ)若在區(qū)間上是單調(diào)函數(shù),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù).
          (1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
          (2)當(dāng)時(shí),若,恒成立,求實(shí)數(shù)的最小值;
          (3)證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù)
          (1)求的單調(diào)區(qū)間;
          (2)若,在區(qū)間恒成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (14分)己知函數(shù)f (x)=ex,xR
          (1)求 f (x)的反函數(shù)圖象上點(diǎn)(1,0)處的切線方程。
          (2)證明:曲線y=f(x)與曲線y=有唯一公共點(diǎn);
          (3)設(shè),比較的大小,并說(shuō)明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù),其中a>0.
          (Ⅰ)求函數(shù)的單調(diào)區(qū)間;
          (Ⅱ)若直線是曲線的切線,求實(shí)數(shù)a的值;
          (Ⅲ)設(shè),求在區(qū)間上的最大值(其中e為自然對(duì)的底數(shù))。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù) .
          (Ⅰ)若函數(shù)在區(qū)間其中上存在極值,求實(shí)數(shù)的取值范圍;
          (Ⅱ)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          已知函數(shù)f(x)=+ln x,若函數(shù)f(x)在[1,+∞)上為增函數(shù),則正實(shí)數(shù)a的取值范圍是______.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案