日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四棱錐的底面是直角梯形,,,側(cè)面底面,是等邊三角形,,點分別是棱的中點 .

          (Ⅰ)求證:平面;

          (Ⅱ)求二面角的大。

          (Ⅲ)在線段上存在一點,使平面,且,求的值.

          【答案】(1)詳見解析;(2) ;(3) .

          【解析】

          試題

          (Ⅰ)由題意證得,結(jié)合線面平行的判斷定理可得平面.

          (Ⅱ)建立空間直角坐標(biāo)系,結(jié)合平面的法向量可得二面角的大小為30°;

          (Ⅲ)利用(II)中的空間直角坐標(biāo)系結(jié)合空間向量的坐標(biāo)表示得到關(guān)于實數(shù) 的方程,解方程可得.

          試題解析:

          (Ⅰ)證明:設(shè)的中點,連接

          分別是的中點

          ,∴

          四點共面

          ,平面,∴平面

          (Ⅱ)

          ∵ 平面 底面,

          平面,過點軸與平面垂直,則平面

          分別為軸,軸建立空間直角坐標(biāo)系

          設(shè)平面的法向量為,則

          設(shè)平面的法向量為

          ,

          ,

          ,∴所求二面角大小為.

          (Ⅲ),,,,設(shè)

          ,,

          ,

          平面,∴

          , .

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】各項均為正數(shù)的數(shù)列的前項和為,且對任意正整數(shù),都有

          1)求數(shù)列的通項公式;

          2)如果等比數(shù)列共有2016項,其首項與公比均為2,在數(shù)列的每相鄰兩項之間插入后,得到一個新的數(shù)列.求數(shù)列中所有項的和;

          3)是否存在實數(shù),使得存在,使不等式成立,若存在,求實數(shù)的范圍,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),

          (Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)若曲線在點處的切線與曲線切于點,求的值;

          (Ⅲ)若恒成立,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中.

          (1)若曲線在點處的切線與直線平行,求滿足的關(guān)系;

          (2)當(dāng)時,討論的單調(diào)性;

          (3)當(dāng)時,對任意的,總有成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,是橢圓上的點,過點的直線的方程為.

          1)求橢圓的離心率;

          2)當(dāng)時,

          i)設(shè)直線軸、軸分別相交于兩點,求的最小值;

          ii)設(shè)橢圓的左、右焦點分別為,,點與點關(guān)于直線對稱,求證:點,三點共線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓 的離心率為,橢圓的四個頂點圍成的四邊形的面積為4.

          (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

          (Ⅱ)直線與橢圓交于, 兩點, 的中點在圓上,求為坐標(biāo)原點)面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】車間將10名技工平均分成甲乙兩組加工某種零件,在單位時間內(nèi)每個技工加工的合格零件數(shù)的統(tǒng)計數(shù)據(jù)的莖葉圖如圖所示.已知兩組技工在單位時間內(nèi)加工的合格零件平均數(shù)都為10.

          (1)分別求出,的值;

          (2)質(zhì)檢部門從該車間甲乙兩組技工中各隨機(jī)抽取一名技工,對其加工的零件進(jìn)行檢測,若兩人加工的合格零件個數(shù)之和大于17,則稱該車間“質(zhì)量合格”,求該車間“質(zhì)量合格”的概率;

          (3)根據(jù)以上莖葉圖和你所學(xué)的統(tǒng)計知識,分析兩組技工的整體加工水平及穩(wěn)定性.

          (注:方差,其中為數(shù)據(jù),,…,的平均數(shù)).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】謝爾賓斯基三角形(Sierpinskitriangle)是一種分形幾何圖形,由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出,它是一個自相似的例子,其構(gòu)造方法是:

          1)取一個實心的等邊三角形(圖1);

          2)沿三邊中點的連線,將它分成四個小三角形;

          3)挖去中間的那一個小三角形(圖2);

          4)對其余三個小三角形重復(fù)(1)(2)(3)(4)(圖3.

          制作出來的圖形如圖4,圖5,….

          若圖3(陰影部分)的面積為1,則圖5(陰影部分)的面積為(

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】【選修4-4,坐標(biāo)系與參數(shù)方程】

          在直角坐標(biāo)系中,直線的參數(shù)方程為t為參數(shù)),在以O為極點,軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為

          )求直線的普通方程與曲線C的直角坐標(biāo)方程;

          )若直線軸的交點為P,直線與曲線C的交點為A,B,的值.

          查看答案和解析>>

          同步練習(xí)冊答案