日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在正方體ABCD-A1B1C1D1中,M是CC1的中點(diǎn),若點(diǎn)P在ABB1A1所在的平面上,滿足∠PDB1=∠MDB1,則點(diǎn)P的軌跡是


          1. A.
          2. B.
            橢圓
          3. C.
            雙曲線
          4. D.
            拋物線
          D
          分析:由已知中點(diǎn)P在ABB1A1所在的平面上,滿足∠PDB1=∠MDB1,我們根據(jù)直線與夾角相等的性質(zhì),我們可以判斷DP的軌跡是一個(gè)以DB1為軸,以DP為母線的圓錐,由此可將問題轉(zhuǎn)化為平面截圓錐得到圓錐曲線的形狀判斷問題,分析平面ABB1A1與母線及軸的關(guān)系,即可得到答案.
          解答:若∠PDB1=∠MDB1,
          則DP的軌跡應(yīng)該是一個(gè)以DB1為軸,以DP為母線的圓錐,
          平面ABB1A1是一個(gè)與母線DM平行的平面
          又∵點(diǎn)P在ABB1A1所在的平面上,
          ∴P點(diǎn)的軌跡為一條拋物線
          故選D
          點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是軌跡方程,圓錐曲線的形狀,其中分析出DP的軌跡是一個(gè)以DB1為軸,以DP為母線的圓錐,將問題轉(zhuǎn)化為平面截圓錐得到圓錐曲線的形狀判斷問題,是解答本題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          16、在正方體ABCD-A′B′C′D′中,過對(duì)角線BD′的一個(gè)平面交AA′于E,交CC′于F,則
          ①四邊形BFD′E一定是平行四邊形;
          ②四邊形BFD′E有可能是正方形;
          ③四邊形BFD′E在底面ABCD內(nèi)的投影一定是正方形;
          ④平面BFD′E有可能垂直于平面BB′D.
          以上結(jié)論正確的為
          ①③④
          .(寫出所有正確結(jié)論的編號(hào))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在正方體ABCD-A′B′C′D′中,E為D′C′的中點(diǎn),則二面角E-AB-C的大小為
          45°
          45°

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在正方體ABCD-A′B′C′D′中,E,F(xiàn)分別是AB′,BC′的中點(diǎn). 
          (1)若M為BB′的中點(diǎn),證明:平面EMF∥平面ABCD.
          (2)求異面直線EF與AD′所成的角.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖在正方體ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H為垂足,則B1H與平面AD1C的位置關(guān)系是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在正方體ABCD-A′B′C′D′中,過對(duì)角線BD′的一個(gè)平面交棱AA′于E,交棱CC′于F,則:
          ①四邊形BFD′E一定是平行四邊形;
          ②四邊形BFD′E有可能是正方形;
          ③四邊形BFD′E有可能是菱形;
          ④四邊形BFD′E有可能垂直于平面BB′D.
          其中所有正確結(jié)論的序號(hào)是
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案