日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某公司每年生產(chǎn)、銷售某種產(chǎn)品的成本包含廣告費(fèi)用支出和浮動(dòng)成本兩部分,該產(chǎn)品的年產(chǎn)量為萬件,每年投入的廣告費(fèi)為萬元,另外,當(dāng)年產(chǎn)量不超過萬件時(shí),浮動(dòng)成本為萬元,當(dāng)年產(chǎn)量超過萬件時(shí),浮動(dòng)成本為萬元.若每萬件該產(chǎn)品銷售價(jià)格為萬元,且每年該產(chǎn)品都能銷售完.

          1)設(shè)年利潤為(萬元),試求關(guān)于的函數(shù)關(guān)系式;

          2)年產(chǎn)量為多少萬件時(shí),該公司所獲利潤最大?并求出最大利潤.

          【答案】1;

          2)當(dāng)年產(chǎn)量萬件時(shí),該公司所獲利潤了最大,最大利潤為萬元.

          【解析】

          1)直接由題意列分段函數(shù)可得函數(shù)的解析式;

          2)分段利用配方法與雙勾函數(shù)的單調(diào)性求最值,比較大小后可得出結(jié)論.

          1)由題意可得,當(dāng)時(shí),,

          當(dāng)時(shí),.

          因此,;

          2)當(dāng)時(shí),,

          當(dāng)時(shí),(萬元);

          當(dāng)時(shí),,

          對于函數(shù),任取,

          ,

          ,,,所以,,

          所以,函數(shù)在區(qū)間上為減函數(shù),

          同理可證函數(shù)在區(qū)間上為增函數(shù),

          所以,函數(shù)在區(qū)間上為增函數(shù),在區(qū)間上為減函數(shù),

          當(dāng)時(shí),(萬元).

          綜上,當(dāng)年產(chǎn)量萬件時(shí),該公司所獲利潤最大,最大利潤為萬元.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某高校共有15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí))

          (1)應(yīng)收集多少位女生樣本數(shù)據(jù)?

          (2)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:.估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過4個(gè)小時(shí)的概率.

          (3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過4個(gè)小時(shí).請完成每周平均體育運(yùn)動(dòng)時(shí)間與性別的列聯(lián)表,并判斷是否有的把握認(rèn)為該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān).

          附:

          0.10

          0.05

          0.010

          0.005

          2.706

          3.841

          6.635

          7.879

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知是橢圓上的兩點(diǎn),且,其中為橢圓的右焦點(diǎn).

          1)求實(shí)數(shù)的取值范圍;

          2)在軸上是否存在一個(gè)定點(diǎn),使得為定值?若存在,求出定值和定點(diǎn)坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示的一塊木料中,棱平行于面.

          1)要經(jīng)過面內(nèi)的一點(diǎn)P和棱將木料鋸開,在木料表面應(yīng)該怎樣畫線?

          2)所畫的線與平面是什么位置關(guān)系?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下面個(gè)說法中正確的序號為_____

          ①函數(shù)有兩個(gè)零點(diǎn);

          ②函數(shù)的圖象關(guān)于點(diǎn)對稱;

          ③若是第三象限角,則的取值集合為

          ④銳角三角形中一定有;

          ⑤已知),同一平面內(nèi)有、、四個(gè)不同的點(diǎn),若,則、必定三點(diǎn)共線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在數(shù)列中,若 (,為常數(shù)),則稱為“等方差數(shù)列”.下列對“等方差數(shù)列”的判斷:

          是等方差數(shù)列,則是等差數(shù)列;

          是等方差數(shù)列;

          是等方差數(shù)列,則 (為常數(shù))也是等方差數(shù)列.其中正確命題序號為

          __________(寫出所有正確命題的序號).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知(是常數(shù),).

          (1)當(dāng)時(shí),求不等式的解集;

          (2)若函數(shù)恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C1的方程為,雙曲線C2的左、右焦點(diǎn)分別是C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn).

          (1)求雙曲線C2的方程;

          (2)若直線lykx與雙曲線C2恒有兩個(gè)不同的交點(diǎn)AB,且,求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)當(dāng)時(shí),求滿足的取值;

          (2)若函數(shù)是定義在上的奇函數(shù)

          ①存在,不等式有解,求的取值范圍;

          ②若函數(shù)滿足,若對任意,不等式恒成立,求實(shí)數(shù)的最大值.

          查看答案和解析>>

          同步練習(xí)冊答案