日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=
          a
          3
          x3-
          a+1
          2
          x2+x+b
          ,其中a,b∈R.
          (Ⅰ)若曲線y=f(x)在點(diǎn)P(2,f(2))處的切線方程為y=5x-4,求函數(shù)f(x)的解析式;
          (Ⅱ)當(dāng)a>0時(shí),討論函數(shù)f(x)的單調(diào)性.
          分析:(1)先求函數(shù)f(x)的導(dǎo)數(shù),令f'(2)=5求出a的值,切點(diǎn)P(2,f(2))在函數(shù)f(x)和直線y=5x-4上,可求出b的值,最后得到答案.
          (2)對(duì)f'(x)的解析式因式分解后討論可得答案.
          解答:解:(Ⅰ)f'(x)=ax2-(a+1)x+1,
          由導(dǎo)數(shù)的幾何意義得f'(2)=5,于是a=3.
          由切點(diǎn)P(2,f(2))在直線y=5x-4上可知2+b=6,解得b=4.
          所以函數(shù)f(x)的解析式為f(x)=x3-2x2+x+4.
          (Ⅱ)f′(x)=ax2-(a+1)x+1=a(x-
          1
          a
          )(x-1)

          當(dāng)0<a<1時(shí),
          1
          a
          >1
          ,函數(shù)f(x)在區(qū)間(-∞,1)及(
          1
          a
          ,+∞)
          上為增函數(shù);
          在區(qū)間(1,
          1
          a
          )
          上為減函數(shù);
          當(dāng)a=1時(shí),
          1
          a
          =1
          ,函數(shù)f(x)在區(qū)間(-∞,+∞)上為增函數(shù);
          當(dāng)a>1時(shí),
          1
          a
          <1
          ,函數(shù)f(x)在區(qū)間(- ∞,
          1
          a
          )
          及(1,+∞)上為增函數(shù);
          在區(qū)間(
          1
          a
          ,1)
          上為減函數(shù).
          點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的正負(fù)之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=a-
          12x+1

          (1)求證:不論a為何實(shí)數(shù)f(x)總是為增函數(shù);
          (2)確定a的值,使f(x)為奇函數(shù);
          (3)當(dāng)f(x)為奇函數(shù)時(shí),求f(x)的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)
          a-x  ,x≤0
          1  ,0<x≤3
          (x-5)2-a,x>3
          (a>0且a≠1)圖象經(jīng)過(guò)點(diǎn)Q(8,6).
          (1)求a的值,并在直線坐標(biāo)系中畫(huà)出函數(shù)f(x)的大致圖象;
          (2)求函數(shù)f(t)-9的零點(diǎn);
          (3)設(shè)q(t)=f(t+1)-f(t)(t∈R),求函數(shù)q(t)的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=a-
          1
          2x+1
          ,若f(x)為奇函數(shù),則a=(  )
          A、
          1
          2
          B、2
          C、
          1
          3
          D、3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          a(x-1)x2
          ,其中a>0.
          (I)求函數(shù)f(x)的單調(diào)區(qū)間;
          (II)若直線x-y-1=0是曲線y=f(x)的切線,求實(shí)數(shù)a的值;
          (III)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對(duì)數(shù)的底數(shù))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=a-
          12x-1
          ,(a∈R)
          (1)求f(x)的定義域;
          (2)若f(x)為奇函數(shù),求a的值;
          (3)考察f(x)在定義域上單調(diào)性的情況,并證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案