日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓
          x22
          +y2=1
          的右準(zhǔn)線l與x軸相交于點(diǎn)E,過橢圓右焦點(diǎn)F的直線與橢圓相交于A、B兩點(diǎn),點(diǎn)C在右準(zhǔn)線l上,且BC∥x軸?求證直線AC經(jīng)過線段EF的中點(diǎn).
          分析:欲證直線AC經(jīng)過線段EF的中點(diǎn),分兩類討論:①若AB垂直于x軸,②若AB不垂直于x軸,對于第一種特殊情況比較簡單,直接驗(yàn)證即可;對于第二種情況,記A(x1,y1)和B(x2,y2),求出直線AN,CN的斜率看它們是不是相等,若相等,則可得A、C、N三點(diǎn)共線.即可證得直線AC經(jīng)過線段EF的中點(diǎn)N.
          解答:證明:依設(shè),得橢圓的半焦距c=1,右焦點(diǎn)為F(1,0),
          右準(zhǔn)線方程為x=2,點(diǎn)E的坐標(biāo)為(2,0),
          EF的中點(diǎn)為N(
          3
          2
          ,0)(3分)
          若AB垂直于x軸,
          則A(1,y1),B(1,-y1),C(2,-y1),
          ∴AC中點(diǎn)為N(
          3
          2
          ,0),
          即AC過EF中點(diǎn)N.
          若AB不垂直于x軸,由直線AB過點(diǎn)F,
          且由BC∥x軸知點(diǎn)B不在x軸上,
          故直線AB的方程為y=k(x-1),k≠0.
          記A(x1,y1)和B(x2,y2),
          則C(2,y2)且x1,
          x2滿足二次方程
          x2
          2
          +k2(x-1)2=1

          即(1+2k2)x2-4k2x+2(k2-1)=0,
          ∴x1+x2=
          4k2
          1+2k2
          ,x1x2=
          2(k2-1)
          1+2k2
          (10分)
          又x21=2-2y21<2,得x1-
          3
          2
          ≠0,
          故直線AN,CN的斜率分別為
          k1=
          y1
          x1-
          3
          2
          =
          2k(x1-1)
          2x1-3
          k2=
          y2
          2-
          3
          2
          =2k(x2-1)

          ∴k1-k2=2k•
          (x1-1)-(x2-1)(2x1-3)
          2x1-3

          ∵(x1-1)-(x2-1)(2x1-3)=3(x1+x2)-2x1x2-4
          =
          1
          1+2k2
          [12k2-4(k2-1)-4(1+2k2)]=0

          ∴k1-k2=0,即k1=k2,故A、C、N三點(diǎn)共線.
          所以,直線AC經(jīng)過線段EF的中點(diǎn)N.(14分)
          點(diǎn)評:直線與圓錐曲線聯(lián)系在一起的綜合題在高考中多以高檔題、壓軸題出現(xiàn),主要涉及位置關(guān)系的判定,弦長問題、最值問題、對稱問題、軌跡問題等,突出考查了數(shù)形結(jié)合、分類討論、函數(shù)與方程、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想方法,要求考生分析問題和解決問題的能力、計(jì)算能力較高,起到了拉開考生“檔次”,有利于選拔的功能
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知橢圓
          x22
          +y2=1
          的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn).
          (I)求過點(diǎn)O、F,并且與橢圓的左準(zhǔn)線l相切的圓的方程;
          (II)設(shè)過點(diǎn)F的直線交橢圓于A、B兩點(diǎn),并且線段AB的中點(diǎn)在直線x+y=0上,求直線AB的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓
          x2
          2
          +y2=1
          的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn).過點(diǎn)F的直線l交橢圓于A、B兩點(diǎn).
          (1)若直線l的傾斜角α=
          π
          4
          ,求|AB|;
          (2)求弦AB的中點(diǎn)M的軌跡方程;
          (3)設(shè)過點(diǎn)F且不與坐標(biāo)軸垂直的直線交橢圓于A、B兩點(diǎn),
          線段AB的垂直平分線與x軸交于點(diǎn)G,求點(diǎn)G橫坐標(biāo)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓
          x22
          +y2=1的左、右焦點(diǎn)為F1、F2,上頂點(diǎn)為A,直線AF1交橢圓于B.如圖所示沿x軸折起,使得平面AF1F2⊥平面BF1F2.點(diǎn)O為坐標(biāo)原點(diǎn).
          ( I ) 求三棱錐A-F1F2B的體積;
          (Ⅱ)圖2中線段BF2上是否存在點(diǎn)M,使得AM⊥OB,若存在,請?jiān)趫D1中指出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•鐘祥市模擬)如圖,已知橢圓
          x2
          2
          +y2=1
          內(nèi)有一點(diǎn)M,過M作兩條動直線AC、BD分別交橢圓于A、C和B、D兩點(diǎn),若|
          AB
          |2+|
          CD
          |2=|
          BC
          |2+|
          AD
          |2


          (1)證明:AC⊥BD;
          (2)若M點(diǎn)恰好為橢圓中心O
          (i)四邊形ABCD是否存在內(nèi)切圓?若存在,求其內(nèi)切圓方程;若不存在,請說明理由.
          (ii)求弦AB長的最小值.

          查看答案和解析>>

          同步練習(xí)冊答案