日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=ex﹣x2﹣ax.
          (Ⅰ)若函數(shù)f(x)的圖象在x=0處的切線方程為y=2x+b,求a,b的值;
          (Ⅱ)若函數(shù)f(x)在R上是增函數(shù),求實(shí)數(shù)a的最大值.

          【答案】解:(Ⅰ)∵f(x)=ex﹣x2﹣ax,∴f′(x)=ex﹣2x﹣a,則f′(0)=1﹣a.

          由題意知1﹣a=2,即a=﹣1.

          ∴f(x)=ex﹣x2+x,則f(0)=1.

          于是1=2×0+b,b=1.

          (Ⅱ)由題意f′(x)≥0,即ex﹣2x﹣a≥0恒成立,∴a≤ex﹣2x恒成立.

          設(shè)h(x)=ex﹣2x,則h′(x)=ex﹣2.

          ∴當(dāng)x∈(﹣∞,ln2)時(shí),h′(x)<0,h(x)為減函數(shù);

          當(dāng)x∈(ln2,+∞)時(shí),h′(x)>0,h(x)為增函數(shù).

          ∴h(x)min=h(ln2)=2﹣2ln2.

          ∴a≤2﹣2ln2,即a的最大值為2﹣2ln2.


          【解析】(Ⅰ)求出f′(x)由f′(0)=1﹣a=2,求得a=﹣1.得到f(x)=ex﹣x2+x,再由f(0)=1求得b值;(Ⅱ)由題意f′(x)≥0,即ex﹣2x﹣a≥0恒成立,∴a≤ex﹣2x恒成立.令h(x)=ex﹣2x,利用導(dǎo)數(shù)求其最小值得答案.
          【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=ex(x﹣b)(b∈R).若存在x∈[ ,2],使得f(x)+xf′(x)>0,則實(shí)數(shù)b的取值范圍是(
          A.(﹣∞,
          B.(﹣∞,
          C.(﹣ ,
          D.( ,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知以下三視圖中有三個(gè)同時(shí)表示某一個(gè)三棱錐,則不是該三棱錐的三視圖是(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,平行四邊形ABCD中,BC=2AB=4,∠ABC=60°,PA⊥AD,E,F(xiàn)分別為BC,PE的中點(diǎn),AF⊥平面PED.
          (1)求證:PA⊥平面ABCD
          (2)求直線BF與平面AFD所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)= 是R上的增函數(shù),則a的取值范圍是(
          A.﹣3≤a<0
          B.﹣3≤a≤﹣2
          C.a≤﹣2
          D.a<0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)f(x)=2x﹣ex+1.
          (1)求f(x)的最大值;
          (2)已知x∈(0,1),af(x)<tanx,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若x∈[1,+∞)時(shí),關(guān)于x的不等式 ≤λ(x﹣1)恒成立,則實(shí)數(shù)λ的取值范圍為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】[選修4-4:參數(shù)方程與極坐標(biāo)系]
          以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,已知直線l的參數(shù)方程為 ,(t為參數(shù),0<θ<π),曲線C的極坐標(biāo)方程為ρsin2θ﹣2cosθ=0.
          (1)求曲線C的直角坐標(biāo)方程;
          (2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),當(dāng)θ變化時(shí),求|AB|的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某工廠生產(chǎn)甲,乙兩種芯片,其質(zhì)量按測(cè)試指標(biāo)劃分為:指標(biāo)大于或等于82為合格品,小于82為次品.現(xiàn)隨機(jī)抽取這兩種芯片各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如表:

          測(cè)試指標(biāo)

          [70,76)

          [76,82)

          [82,88)

          [88,94)

          [94,100]

          芯片甲

          8

          12

          40

          32

          8

          芯片乙

          7

          18

          40

          29

          6

          (Ⅰ)試分別估計(jì)芯片甲,芯片乙為合格品的概率;
          (Ⅱ)生產(chǎn)一件芯片甲,若是合格品可盈利40元,若是次品則虧損5元;生產(chǎn)一件芯片乙,若是合格品可盈利50元,若是次品則虧損10元.在(I)的前提下,
          (i)記X為生產(chǎn)1件芯片甲和1件芯片乙所得的總利潤(rùn),求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
          (ii)求生產(chǎn)5件芯片乙所獲得的利潤(rùn)不少于140元的概率.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案