日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 對(duì)于每項(xiàng)均是正整數(shù)的數(shù)列A:a1,a2,…,an,定義變換T1,T1將數(shù)列A變換成數(shù)列T1(A):n,a1-1,a2-1,…,an-1.
          對(duì)于每項(xiàng)均是非負(fù)整數(shù)的數(shù)列B:b1,b2,…,bm,定義變換T2,T2將數(shù)列B各項(xiàng)從大到小排列,然后去掉所有為零的項(xiàng),得到數(shù)列T2(B);
          又定義S(B)=2(b1+2b2+…+mbm)+b12+b22+…+bm2.設(shè)A0是每項(xiàng)均為正整數(shù)的有窮數(shù)列,令A(yù)k+1=T2(T1(Ak))(k=0,1,2,…).
          (Ⅰ)如果數(shù)列A0為5,3,2,寫(xiě)出數(shù)列A1,A2;
          (Ⅱ)對(duì)于每項(xiàng)均是正整數(shù)的有窮數(shù)列A,證明S(T1(A))=S(A);
          (Ⅲ)證明:對(duì)于任意給定的每項(xiàng)均為正整數(shù)的有窮數(shù)列A0,存在正整數(shù)K,當(dāng)k≥K時(shí),S(Ak+1)=S(Ak).

          解:(Ⅰ)解:A0:5,3,2,T1(A0):3,4,2,1,A1=T2(T1(A0)):4,3,2,1;T1(A1):4,3,2,1,0,A2=T2(T1(A1)):4,3,2,1.
          (Ⅱ)證明:設(shè)每項(xiàng)均是正整數(shù)的有窮數(shù)列A為a1,a2,,an,
          則T1(A)為n,a1-1,a2-1,,an-1,
          從而S(T1(A))=2[n+2(a1-1)+3(a2-1)++(n+1)(an-1)]+n2+(a1-1)2+(a2-1)2++(an-1)2
          又S(A)=2(a1+2a2++nan)+a12+a22++an2
          所以S(T1(A))-S(A)=2[n-2-3--(n+1)]+2(a1+a2++an)+n2-2(a1+a2++an)+n=-n(n+1)+n2+n=0,
          故S(T1(A))=S(A).
          (Ⅲ)證明:設(shè)A是每項(xiàng)均為非負(fù)整數(shù)的數(shù)列a1,a2,,an
          當(dāng)存在1≤i<j≤n,使得ai≤aj時(shí),交換數(shù)列A的第i項(xiàng)與第j項(xiàng)得到數(shù)列B,
          則S(B)-S(A)=2(iaj+jai-iai-jaj)=2(i-j)(aj-ai)≤0.
          當(dāng)存在1≤m<n,使得am+1=am+2═an=0時(shí),若記數(shù)列a1,a2,,am為C,
          則S(C)=S(A).
          所以S(T2(A))≤S(A).
          從而對(duì)于任意給定的數(shù)列A0,由Ak+1=T2(T1(Ak))(k=0,1,2,)
          可知S(Ak+1)≤S(T1(Ak)).
          又由(Ⅱ)可知S(T1(Ak))=S(Ak),所以S(Ak+1)≤S(Ak).
          即對(duì)于k∈N,要么有S(Ak+1)=S(Ak),要么有S(Ak+1)≤S(Ak)-1.
          因?yàn)镾(Ak)是大于2的整數(shù),所以經(jīng)過(guò)有限步后,必有S(Ak)=S(Ak+1)=S(Ak+2)=0.
          即存在正整數(shù)K,當(dāng)k≥K時(shí),S(Ak+1)=S(A)
          分析:(Ⅰ)由A0:5,3,2,求得T1(A0)再通過(guò)Ak+1=T2(T1(Ak))求解.
          (Ⅱ)設(shè)有窮數(shù)列A求得T1(A)再求得S(T1(A)),由S(A)=2(a1+2a2++nan)+a12+a22++an2,兩者作差比較.
          (Ⅲ)設(shè)A是每項(xiàng)均為非負(fù)整數(shù)的數(shù)列a1,a2,,an.在存在1≤i<j≤n,有ai≤aj時(shí)條件下,交換數(shù)列A的第i項(xiàng)與第j項(xiàng)得到數(shù)列B,在存在1≤m<n,使得am+1=am+2═an=0時(shí)條件下,若記數(shù)列a1,a2,…,am為C,Ak+1=T2(T1(Ak))s(Ak+1)≤S(T1(Ak)).由S(T1(Ak))=S(Ak),得到S(Ak+1)≤S(Ak).S(Ak)是大于2的整數(shù),所以經(jīng)過(guò)有限步后,必有S(Ak)=S(Ak+1)=S(Ak+2)=0.
          點(diǎn)評(píng):本題是一道由一個(gè)數(shù)列為基礎(chǔ),按著某種規(guī)律新生出另一個(gè)數(shù)列的題目,要注意新數(shù)列的前幾項(xiàng)一定不能出錯(cuò),一出旦錯(cuò),則整體出錯(cuò).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          21、對(duì)于每項(xiàng)均是正整數(shù)的數(shù)列A:a1,a2,…,an,定義變換T1,T1將數(shù)列A變換成數(shù)列T1(A):n,a1-1,a2-1,…,an-1.
          對(duì)于每項(xiàng)均是非負(fù)整數(shù)的數(shù)列B:b1,b2,…,bm,定義變換T2,T2將數(shù)列B各項(xiàng)從大到小排列,然后去掉所有為零的項(xiàng),得到數(shù)列T2(B);
          又定義S(B)=2(b1+2b2+…+mbm)+b12+b22+…+bm2.設(shè)A0是每項(xiàng)均為正整數(shù)的有窮數(shù)列,令A(yù)k+1=T2(T1(Ak))(k=0,1,2,…).
          (Ⅰ)如果數(shù)列A0為5,3,2,寫(xiě)出數(shù)列A1,A2;
          (Ⅱ)對(duì)于每項(xiàng)均是正整數(shù)的有窮數(shù)列A,證明S(T1(A))=S(A);
          (Ⅲ)證明:對(duì)于任意給定的每項(xiàng)均為正整數(shù)的有窮數(shù)列A0,存在正整數(shù)K,當(dāng)k≥K時(shí),S(Ak+1)=S(Ak).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2009•崇明縣二模)對(duì)于每項(xiàng)均是正整數(shù)的數(shù)列A:a1,a2,…,an,定義變換T1,T1將數(shù)列A變換成數(shù)列T1(A):n,a1-1,a2-1,…,an-1;對(duì)于每項(xiàng)均是非負(fù)整數(shù)的數(shù)列B:b1,b2,…,bm,定義變換T2,T2將數(shù)列B各項(xiàng)從大到小排列,然后去掉所有為零的項(xiàng),得到數(shù)列T2(B);設(shè)A0是每項(xiàng)均為正整數(shù)的有窮數(shù)列,令A(yù)k+1=T2(T1(Ak))(k=0,1,2,…).如果數(shù)列A0為4,2,1,則數(shù)列A1
          A2為3,3,1
          A2為3,3,1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          20.(本小題共13分)

          對(duì)于每項(xiàng)均是正整數(shù)的數(shù)列,定義變換將數(shù)列變換成數(shù)列

          對(duì)于每項(xiàng)均是非負(fù)整數(shù)的數(shù)列,定義變換,將數(shù)列各項(xiàng)從大到小排列,然后去掉所有為零的項(xiàng),得到數(shù)列

          又定義

          設(shè)是每項(xiàng)均為正整數(shù)的有窮數(shù)列,令

          (Ⅰ)如果數(shù)列為5,3,2,寫(xiě)出數(shù)列;

          (Ⅱ)對(duì)于每項(xiàng)均是正整數(shù)的有窮數(shù)列,證明;

          (Ⅲ)證明對(duì)于任意給定的每項(xiàng)均為正整數(shù)的有窮數(shù)列,存在正整數(shù),當(dāng)時(shí),

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          對(duì)于每項(xiàng)均是正整數(shù)的數(shù)列A:a1,a2,…,an,定義變換T1T1將數(shù)列A變換成數(shù)列T1A.:n,a1-1,a2-1,…,an-1.

          對(duì)于每項(xiàng)均是非負(fù)整數(shù)的數(shù)列B:b1,b2, …,bm,定義變換T2,T2將數(shù)列B各項(xiàng)從大到小排列,然后去掉所有為零的項(xiàng),得到數(shù)列T2B):又定義

          SB)=2(b1+2b2+…+mbm)+b21+b22+…+b2m

          設(shè)A0是每項(xiàng)均為正整數(shù)的有窮數(shù)列,令Ak+1=T2(T1(Ak))(k=0,1,2, …)

          (Ⅰ)如果數(shù)列A0為5,3,2,寫(xiě)出數(shù)列A1,A2

          (Ⅱ)對(duì)于每項(xiàng)均是正整數(shù)的有窮數(shù)列A,證明ST1A.)=SA.;

          (Ⅲ)證明:對(duì)于任意給定的每項(xiàng)均為正整數(shù)的有窮數(shù)列A0,存在正整數(shù)K,當(dāng)k≥K時(shí),S(Ak+1)=S(Ak).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2009年上海市崇明縣高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

          對(duì)于每項(xiàng)均是正整數(shù)的數(shù)列A:a1,a2,…,an,定義變換T1,T1將數(shù)列A變換成數(shù)列T1(A):n,a1-1,a2-1,…,an-1;對(duì)于每項(xiàng)均是非負(fù)整數(shù)的數(shù)列B:b1,b2,…,bm,定義變換T2,T2將數(shù)列B各項(xiàng)從大到小排列,然后去掉所有為零的項(xiàng),得到數(shù)列T2(B);設(shè)A是每項(xiàng)均為正整數(shù)的有窮數(shù)列,令A(yù)k+1=T2(T1(Ak))(k=0,1,2,…).如果數(shù)列A為4,2,1,則數(shù)列A1   

          查看答案和解析>>

          同步練習(xí)冊(cè)答案