日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 橢圓方程為,a,b∈{1,2,3,4,5,6},則焦點在y軸上的不同橢圓有    個.
          【答案】分析:由題意知本題是一個計數(shù)原理的應(yīng)用,需要構(gòu)成焦點在y軸上的橢圓,則要使得a小于b,列舉出所有的符合條件的情況,根據(jù)分類加法原理得到結(jié)果.
          解答:解:由題意知本題是一個計數(shù)原理的應(yīng)用,
          ∵要構(gòu)成焦點在y軸上的橢圓,
          ∴a<b
          當a=1,b=2,3,4,5,6
          當a=2,b=3,4,5,6
          當a=3,b=4,5,6
          當a=4,b=5,6
          當a=5,b=6
          共有1+2+3+4+5=15個
          故答案為:15
          點評:本題考查計數(shù)原理的應(yīng)用,本題解題的關(guān)鍵是看出構(gòu)成焦點位于縱軸上的橢圓的條件,不重不漏的列舉出來,若題目只是要求構(gòu)成橢圓,則要者與去掉圓的情況,本題是一個基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)橢圓方程為=1(a>b>0),短軸的一個頂點B與兩焦點F1、F2組成的三角形的周長為4+2,且∠F1BF2=,求橢圓方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)橢圓方程為=1(a>b>0),短軸的一個頂點B與兩焦點F1、F2組成的三角形的周長為4+2,且∠F1BF2=,求橢圓方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)橢圓方程為=1(a>b>0),短軸的一個頂點B與兩焦點F1、F2組成的三角形的周長為4+2,且∠F1BF2=,求橢圓方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:月考題 題型:解答題

          已知橢圓方程為(a>b>0),長軸兩端點A、B,短軸上端頂點為M,點O為坐標原點,F(xiàn)為橢圓的右焦點,且=1,|OF|=1.
          (1)求橢圓方程;
          (2)直線l交橢圓于P、Q兩點,問:是否存在直線l,使點F恰為△PQM的垂心?若存在,求出直線l的方程,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013年浙江省杭州市重點高中高考命題比賽數(shù)學(xué)參賽試卷02(文科)(解析版) 題型:選擇題

          已知橢圓方程為,A、B分別是橢圓長軸的兩個端點,M,N是橢圓上關(guān)于x軸對稱的兩點,直線AM,BN的斜率分別為k1,k2,若,則橢圓的離心率為( )
          A.
          B.
          C.
          D.

          查看答案和解析>>

          同步練習(xí)冊答案