日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如果對(duì)于函數(shù)y=f(x)的定義域內(nèi)的任意x,都有N≤f(x)≤M(M,N為常數(shù))成立,那么稱f(x)為可界定函數(shù),M為上界值,N為下界值.設(shè)上界值中的最小值為m,下界值中的最大值為n.給出函數(shù)f(x)=2x+
          2
          x
          ,x∈(
          1
          2
          ,2),那么m+n的值( 。
          A.大于9B.等于9C.小于9D.不存在
          f(x)=2x+
          2
          x
          ,x∈(
          1
          2
          ,2),
          f(x)=2x+
          2
          x
          ≥2
          4
          =4,當(dāng)且僅當(dāng)x=1時(shí),等號(hào)成立,
          ∴f(X)min=4,f(x)max=max{f(
          1
          2
          ),f(2)}<5
          ∴m=5,n=4,∴m+n=9.
          故選B.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如果對(duì)于函數(shù)y=f(x)的定義域內(nèi)的任意x,都有N≤f(x)≤M(M,N為常數(shù))成立,那么稱f(x)為可界定函數(shù),M為上界值,N為下界值.設(shè)上界值中的最小值為m,下界值中的最大值為n.給出函數(shù)f(x)=2x+
          2
          x
          ,x∈(
          1
          2
          ,2),那么m+n的值(  )
          A、大于9B、等于9
          C、小于9D、不存在

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•江西模擬)已知函數(shù)f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
          (1)求函數(shù)g(x)在區(qū)間(0,e]上的值域;
          (2)是否存在實(shí)數(shù)a,對(duì)任意給定的x0∈(0,e],在區(qū)間[1,e]上都存在兩個(gè)不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范圍;若不存在,請(qǐng)說明理由.
          (3)給出如下定義:對(duì)于函數(shù)y=F(x)圖象上任意不同的兩點(diǎn)A(x1,y1),B(x2,y2),如果對(duì)于函數(shù)y=F(x)圖象上的點(diǎn)M(x0,y0)(其中x0=
          x1+x22
          )
          總能使得F(x1)-F(x2)=F'(x0)(x1-x2)成立,則稱函數(shù)具備性質(zhì)“L”,試判斷函數(shù)f(x)是不是具備性質(zhì)“L”,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:江西模擬 題型:解答題

          已知函數(shù)f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
          (1)求函數(shù)g(x)在區(qū)間(0,e]上的值域;
          (2)是否存在實(shí)數(shù)a,對(duì)任意給定的x0∈(0,e],在區(qū)間[1,e]上都存在兩個(gè)不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范圍;若不存在,請(qǐng)說明理由.
          (3)給出如下定義:對(duì)于函數(shù)y=F(x)圖象上任意不同的兩點(diǎn)A(x1,y1),B(x2,y2),如果對(duì)于函數(shù)y=F(x)圖象上的點(diǎn)M(x0,y0)(其中x0=
          x1+x2
          2
          )
          總能使得F(x1)-F(x2)=F'(x0)(x1-x2)成立,則稱函數(shù)具備性質(zhì)“L”,試判斷函數(shù)f(x)是不是具備性質(zhì)“L”,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)單元檢測(cè):函數(shù)(1)(解析版) 題型:選擇題

          如果對(duì)于函數(shù)y=f(x)的定義域內(nèi)的任意x,都有N≤f(x)≤M(M,N為常數(shù))成立,那么稱f(x)為可界定函數(shù),M為上界值,N為下界值.設(shè)上界值中的最小值為m,下界值中的最大值為n.給出函數(shù)f(x)=2x+,x∈(,2),那么m+n的值( )
          A.大于9
          B.等于9
          C.小于9
          D.不存在

          查看答案和解析>>

          同步練習(xí)冊(cè)答案