日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,點(diǎn)F是橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左焦點(diǎn),A、B是橢圓的兩個(gè)頂點(diǎn),橢圓的離心率為
          1
          2
          .點(diǎn)C在x軸上,BC⊥BF,且B、C、F三點(diǎn)確定的圓M恰好與直線x+
          3
          y+3=0
          相切.
          (Ⅰ)求橢圓的方程;
          (Ⅱ)過F作一條與兩坐標(biāo)軸都不垂直的直線l交橢圓于P、Q兩點(diǎn),在x軸上是否存在定點(diǎn)N,使得NF恰好為△PNQ的內(nèi)角平分線,若存在,求出點(diǎn)N的坐標(biāo),若不存在,請說明理由.
          精英家教網(wǎng)
          (Ⅰ)∵
          c
          a
          =
          1
          2
          ,
          ∴c=
          1
          2
          a,b=
          a2-c2
          =
          3
          2
          a,
          又F(-c,0),B(0,b),在直角三角形BFO中,tan∠BFO=
          |OB|
          |OF|
          =
          b
          c
          =
          3

          ∴∠BFO=
          π
          3
          .|BF|=a.
          ∵BC⊥BF,
          ∴∠BCF=
          π
          6

          ∴|CF|=2a.
          ∴B、C、F三點(diǎn)確定的圓M的圓心M的坐標(biāo)為:(
          a
          2
          ,0),半徑r=a;
          又圓M與直線x+
          3
          y+3=0
          相切,
          ∴圓心M到直線x+
          3
          y+3=0的距離等于r,即
          |
          a
          2
          +0+3|
          2
          =a,又a>0,
          ∴a=2,
          ∴b=
          3

          ∴橢圓的方程為:
          x2
          4
          +
          y2
          3
          =1

          (Ⅱ)假設(shè)在x軸上是否存在定點(diǎn)N,使得NF恰好為△PNQ的內(nèi)角平分線,
          則由角平分線的性質(zhì)定理得:
          |PF|
          |FQ|
          =
          |PN|
          |NQ|
          ,又|PF|+|PN|=2a=4,|QF|+|QN|=2a=4,
          |PF|
          |FQ|
          =
          4-|PF|
          4-|FQ|
          ,
          ∴|PF|=|QF|,即F為PQ的中點(diǎn),
          ∴PQ⊥x軸,這與已知“過F作一條與兩坐標(biāo)軸都不垂直的直線l交橢圓于P、Q兩點(diǎn)”矛盾,
          ∴假設(shè)不成立,即在x軸上不存在定點(diǎn)N,使得NF恰好為△PNQ的內(nèi)角平分線.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知半橢圓
          x2
          b2
          +
          y2
          a2
          =1 (y≥0)
          和半圓x2+y2=b2(y≤0)組成曲線C,其中a>b>0;如圖,半橢圓
          x2
          b2
          +
          y2
          a2
          =1 (y≥0)
          內(nèi)切于矩形ABCD,且CD交y軸于點(diǎn)G,點(diǎn)P是半圓x2+y2=b2(y≤0)上異于A,B的任意一點(diǎn),當(dāng)點(diǎn)P位于點(diǎn)M(
          6
          3
          ,-
          3
          3
          )
          時(shí),△AGP的面積最大.
          (1)求曲線C的方程;
          (2)連PC、PD交AB分別于點(diǎn)E、F,求證:AE2+BF2為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C1
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率為
          3
          2
          ,一個(gè)焦點(diǎn)坐標(biāo)為F(-
          3
          ,0)

          (1)求橢圓C1的方程;
          (2)點(diǎn)N是橢圓的左頂點(diǎn),點(diǎn)P是橢圓C1上不同于點(diǎn)N的任意一點(diǎn),連接
          NP并延長交橢圓右準(zhǔn)線與點(diǎn)T,求
          TP
          NP
          的取值范圍;
          (3)設(shè)曲線C2:y=x2-1與y軸的交點(diǎn)為M,過M作兩條互相垂直的直線與曲線C2、橢圓C1相交于點(diǎn)A、D和B、E,(如圖),記△MAB、
          △MDE的面積分別是S1,S2,當(dāng)
          S1
          S2
          =
          27
          64
          時(shí),求直線AB的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省揚(yáng)州中學(xué)高三(上)周練數(shù)學(xué)試卷(12.22)(解析版) 題型:解答題

          已知半橢圓和半圓x2+y2=b2(y≤0)組成曲線C,其中a>b>0;如圖,半橢圓內(nèi)切于矩形ABCD,且CD交y軸于點(diǎn)G,點(diǎn)P是半圓x2+y2=b2(y≤0)上異于A,B的任意一點(diǎn),當(dāng)點(diǎn)P位于點(diǎn)時(shí),△AGP的面積最大.
          (1)求曲線C的方程;
          (2)連PC、PD交AB分別于點(diǎn)E、F,求證:AE2+BF2為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年江蘇省鹽城中學(xué)高考數(shù)學(xué)一模試卷(解析版) 題型:解答題

          已知半橢圓和半圓x2+y2=b2(y≤0)組成曲線C,其中a>b>0;如圖,半橢圓內(nèi)切于矩形ABCD,且CD交y軸于點(diǎn)G,點(diǎn)P是半圓x2+y2=b2(y≤0)上異于A,B的任意一點(diǎn),當(dāng)點(diǎn)P位于點(diǎn)時(shí),△AGP的面積最大.
          (1)求曲線C的方程;
          (2)連PC、PD交AB分別于點(diǎn)E、F,求證:AE2+BF2為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年江蘇省蘇州市六校聯(lián)合高三調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

          已知半橢圓和半圓x2+y2=b2(y≤0)組成曲線C,其中a>b>0;如圖,半橢圓內(nèi)切于矩形ABCD,且CD交y軸于點(diǎn)G,點(diǎn)P是半圓x2+y2=b2(y≤0)上異于A,B的任意一點(diǎn),當(dāng)點(diǎn)P位于點(diǎn)時(shí),△AGP的面積最大.
          (1)求曲線C的方程;
          (2)連PC、PD交AB分別于點(diǎn)E、F,求證:AE2+BF2為定值.

          查看答案和解析>>

          同步練習(xí)冊答案