日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知雙曲線2x2-3y2-6=0的一條弦AB被直線y=kx平分,則弦AB所在直線的斜率是_________________.

          解:設(shè)A(x1,y1)、B(x2,y2),直線AB的斜率為kAB.

          兩式相減,得2(x12-x22)-3(y12-y22)=0.

          ∴(x1+x2)(x1-x2)=3(y1+y2)(y1-y2).

          =·.

          ∴kAB=·.

          又點(diǎn)(,)在直線y=kx上,

          =k.∴=.

          ∴kAB=·=.

          答案:

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•上海)在平面直角坐標(biāo)系xOy中,已知雙曲線C1:2x2-y2=1.
          (1)過(guò)C1的左頂點(diǎn)引C1的一條漸進(jìn)線的平行線,求該直線與另一條漸進(jìn)線及x軸圍成的三角形的面積;
          (2)設(shè)斜率為1的直線l交C1于P、Q兩點(diǎn),若l與圓x2+y2=1相切,求證:OP⊥OQ;
          (3)設(shè)橢圓C2:4x2+y2=1,若M、N分別是C1、C2上的動(dòng)點(diǎn),且OM⊥ON,求證:O到直線MN的距離是定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知雙曲線 2x2-y2=m的焦點(diǎn)在x軸,且一個(gè)焦點(diǎn)是(
          3
          ,0)
          ,則m的值是
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•上海)在平面直角坐標(biāo)系xOy中,已知雙曲線C:2x2-y2=1.
          (1)設(shè)F是C的左焦點(diǎn),M是C右支上一點(diǎn),若|MF|=2
          2
          ,求點(diǎn)M的坐標(biāo);
          (2)過(guò)C的左焦點(diǎn)作C的兩條漸近線的平行線,求這兩組平行線圍成的平行四邊形的面積;
          (3)設(shè)斜率為k(|k|<
          2
          )的直線l交C于P、Q兩點(diǎn),若l與圓x2+y2=1相切,求證:OP⊥OQ.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          已知雙曲線 2x2-y2=m的焦點(diǎn)在x軸,且一個(gè)焦點(diǎn)是(
          3
          ,0)
          ,則m的值是______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:高考真題 題型:解答題

          在平面直角坐標(biāo)系xOy中,已知雙曲線C1:2x2-y2=1。
          (1)過(guò)C1的左頂點(diǎn)引C1的一條漸進(jìn)線的平行線,求該直線與另一條漸進(jìn)線及x軸圍成的三角形的面積;
          (2)設(shè)斜率為1的直線l交C1于P、Q兩點(diǎn),若l與圓x2+y2=1相切,求證:OP⊥OQ;
          (3)設(shè)橢圓C2:4x2+y2=1,若M、N分別是C1、C2上的動(dòng)點(diǎn),且OM⊥ON,求證:O到直線MN的距離是定值。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案