日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設F1,F(xiàn)2分別為橢圓的左、右兩個焦點,若橢圓C上的點A(1,)到F1,F(xiàn)2兩點的距離之和等于4.
          (1)寫出橢圓C的方程和焦點坐標;
          (2)過點P(1,)的直線與橢圓交于兩點D、E,若DP=PE,求直線DE的方程;
          (3)過點Q(1,0)的直線與橢圓交于兩點M、N,若△OMN面積取得最大,求直線MN的方程.
          【答案】分析:(1)把已知點的坐標代入橢圓方程,再由橢圓的定義知2a=4,從而求出橢圓的方程,由橢圓的方程求出焦點坐標.
          (2)設出DE方程,代入橢圓方程,利用中點坐標公式,求出斜率,即可求直線DE的方程;
          (3)(3)直線MN不與y軸垂直,設MN方程為my=x-1,代入橢圓C的方程,求出△OMN面積,利用導數(shù),確定單調(diào)性,可得面積最大值,從而可求直線MN的方程.
          解答:解:(1)橢圓C的焦點在x軸上,
          由橢圓上的點A到F1、F2兩點的距離之和是4,得2a=4,即a=2,
          又點A(1,) 在橢圓上,因此,得b2=1,于是c2=3,
          所以橢圓C的方程為,…(4分)
          (2)顯然直線DE斜率存在,設為k,方程為,設D(x1′,y1′),E(x2′,y2′),則
          ,消去y可得
          ,∴k=-1
          ∴DE方程為y-1=-1(x-),即4x+4y=5;…(9分)
          (3)直線MN不與y軸垂直,設MN方程為my=x-1,代入橢圓C的方程得(m2+4)y2+2my-3=0,
          設M(x1,y1),N(x2,y2),則y1+y2=-,y1y2=-,且△>0成立.
          又S△OMN=|y1-y2|=×=
          設t=,則S△OMN=
          (t+)′=1-t-2>0對t≥恒成立,∴t=時,t+取得最小,S△OMN最大,此時m=0,
          ∴MN方程為x=1;…(14分)
          點評:本題考查橢圓的標準方程,考查直線與橢圓的位置關(guān)系,考查三角形面積的計算,正確運用韋達定理是關(guān)鍵.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          設F1,F(xiàn)2分別為橢C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的左、右兩個焦點,橢圓C上的點A(1,
          3
          2
          )
          到兩點的距離之和等于4.
          (Ⅰ)求橢圓C的方程和焦點坐標;
          (Ⅱ)設點P是(Ⅰ)中所得橢圓上的動點Q(0.
          1
          2
          )
          求|PQ|的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          設F1,F(xiàn)2分別為橢C:數(shù)學公式(a>b>0)的左、右兩個焦點,橢圓C上的點數(shù)學公式到兩點的距離之和等于4.
          (Ⅰ)求橢圓C的方程和焦點坐標;
          (Ⅱ)設點P是(Ⅰ)中所得橢圓上的動點數(shù)學公式求|PQ|的最大值.

          查看答案和解析>>

          同步練習冊答案