【題目】已知函數(shù).
(1)當時,求曲線
在點
處的切線方程.
(2)當時,若對任意的
,都有
,求實數(shù)a的取值范圍.
【答案】(1);(2)
.
【解析】
(1)求得時
的導數(shù),可得切線的斜率和切點,由點斜式方程可得所求切線方程;
(2)求得的導數(shù),討論
,
,
的單調區(qū)間,考慮
在
,
的單調性,求得最小值,可令其不小于
,解不等式可得所求范圍.
解:(1)當時,
,
所以,
所以曲線在點
處的切線斜率
,
又,所以曲線
在點
處的切線方程為
,即
.
(2)由,
得.
當時,
,
在
上單調遞增,
則,顯然成立;
當時,由
,得
;
由,得
,
所以在
上單調遞減,在
和
上單調遞增.
①時,
,
在
上單調遞減,
所以,
所以對任意的,都有
等價于
,
即,
解得,
又,所以
;
②當時,
,
所以在
上的最小值為
.
又當時,
,顯然成立.
綜上,實數(shù)a的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,四棱錐中,
菱形
所在的平面,
是
中點,
是
上的點.
(1)求證:平面平面
;
(2)若是
的中點,當
時,是否存在點
,使直線
與平面
的所成角的正弦值為
?若存在,請求出
的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線C和橢圓有公共的焦點,且離心率為
.
(1)求雙曲線C的方程.
(2)經過點M(2,1)作直線l交雙曲線C于A,B兩點,且M為AB的中點,求直線l的方程并求弦長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓離心率為
,四個頂點構成的四邊形的面積是4.
(1)求橢圓C的標準方程;
(2)若直線與橢圓C交于P,Q均在第一象限,直線OP,OQ的斜率分別為
,
,且
(其中O為坐標原點).證明:直線l的斜率k為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的導函數(shù)
是偶函數(shù),若方程
在區(qū)間
(其中
為自然對數(shù)的底)上有兩個不相等的實數(shù)根,則實數(shù)
的取值范圍是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABCA1B1C1中,AB=AC,A1C⊥BC1,AB1⊥BC1,D,E分別是AB1和BC的中點.
求證:(1)DE∥平面ACC1A1;
(2)AE⊥平面BCC1B1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數(shù)方程為
(
為參數(shù)).M是曲線
上的動點,將線段OM繞O點順時針旋轉
得到線段ON,設點N的軌跡為曲線
.以坐標原點O為極點,
軸正半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程;
(2)在(1)的條件下,若射線與曲線
分別交于A, B兩點(除極點外),且有定點
,求
的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出如下四個命題:①若“且
”為假命題,則
均為假命題;②命題“若
,則
”的否命題為“若
,則
”; ③“
,則
”的否定是“
,則
”;④在
中,“
”是“
”的充要條件.其中正確的命題的個數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com