【題目】已知函數(shù),曲線
在
(
是自然對數(shù)的底數(shù))處的切線與圓
在點
處的切線平行.
(Ⅰ)證明: ;
(Ⅱ)若不等式在
上恒成立,求實數(shù)
的取值范圍.
【答案】(Ⅰ)見解析;(Ⅱ) .
【解析】試題分析:(Ⅰ)易知圓在點
處的切線方程為
,知
在
處的導數(shù)為2,得
,
求導得最值最小值為
,即可證得;
(Ⅱ)不等式
在
上恒成立,即
在
上恒成立. 設
,
,求最值即可.
試題解析:
(Ⅰ)證明: ,
,
易知圓在點
處的切線方程為
,
由題意知, ,即
,解得
,
,
,令
,得
,
當時,
,
在
上單調(diào)遞減,
當時,
,
在
上單調(diào)遞增.
因此, 在
處取得極小值,也為最小值,最小值為
,
又,故
.
(Ⅱ)不等式
在
上恒成立,
即
在
上恒成立.
設
,
,
則
,
①當時,
在
上恒成立,
在
上是減函數(shù),又
,
故當時,總有
,符合題意;
②當時,令
,解得
或
,
易知在
上是減函數(shù),在
上是增函數(shù),又
,
故當時,總有
,不符合題意;
③當時,
在
上恒成立,
在
上是減函數(shù),又
,故當
時,總有
,符合題意.
綜上所述,實數(shù)的取值范圍是
.
科目:高中數(shù)學 來源: 題型:
【題目】《孫子算經(jīng)》是中國古代重要的數(shù)學著作,約成書于四、五世紀,也就是大約一千五百年前,傳本的《孫子算經(jīng)》共三卷,卷中有一問題:“今有方物一束,外周一匝有三十二枚,問積幾何?”該著作中提出了一種解決問題的方法:“重置二位,左位減八,余加右位,至盡虛加一,即得.”通過對該題的研究發(fā)現(xiàn),若一束方物外周一匝的枚數(shù)是8的整數(shù)倍時,均可采用此方法求解,如圖,是解決這類問題的程序框圖,若輸入
,則輸出的結果為( )
A. 120 B. 121 C. 112 D. 113
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班同學利用寒假進行社會實踐活動,對[25,55]歲的人群隨機抽取n人進行了一次生活習慣是否符合低碳觀念的調(diào)查,若生活習慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:
組數(shù) | 分組 | 低碳族人數(shù) | 占本組的頻率 |
第一組 | [25,30) | 120 | 0.6 |
第二組 | [30,35) | 195 | p |
第三組 | [35,40) | 100 | 0.5 |
第四組 | [40,45) | a | 0.4 |
第五組 | [45,50) | 30 | 0.3 |
第六組 | [50,55) | 15 | 0.3 |
(1)補全頻率分布直方圖并求n、a、p的值;
(2)從年齡段在[40,50)的“低碳族”中采用分層抽樣法抽取6人參加戶外低碳體驗活動,其中選取2人作為領隊,求選取的2名領隊中恰有1人年齡在[40,45)歲的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等邊三角形的邊長為4,四邊形
為正方形,平面
平面
,
,
,
,
分別是線段
,
,
,
上的點.
(Ⅰ)如圖①,若為線段
的中點,
,證明:
平面
;
(Ⅱ)如圖②,若,
分別為線段
,
的中點,
,
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司今年年初用25萬元引進一種新的設備,投入設備后每年收益為21萬元.該公司第n年需要付出設備的維修和工人工資等費用an的信息如圖.
(1)求an;
(2)引進這種設備后,第幾年后該公司開始獲利;
(3)這種設備使用多少年,該公司的年平均獲利最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:x2+y2﹣4x﹣4y+4=0,點E(3,4).
(1)過點E的直線l與圓交與A,B兩點,若AB=2 ,求直線l的方程;
(2)從圓C外一點P(x1 , y1)向該圓引一條切線,切點記為M,O為坐標原點,且滿足PM=PO,求使得PM取得最小值時點P的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,有一壁畫,最高點A處離地面AO=4m,最低點B處離地面BO=2m,觀賞它的C點在過墻角O點與地面成30°角的射線上.
(1)設點C到墻的距離為x,當x= m時,求tanθ的值;
(2)問C點離墻多遠時,視角θ最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com