日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),曲線是自然對數(shù)的底數(shù))處的切線與圓在點處的切線平行.

          (Ⅰ)證明: ;

          (Ⅱ)若不等式上恒成立,求實數(shù)的取值范圍.

          【答案】(Ⅰ)見解析;(Ⅱ) .

          【解析】試題分析:易知圓在點處的切線方程為,處的導數(shù)為2,得 求導得最值最小值為,即可證得;

          不等式 上恒成立,即 上恒成立. 設 , ,求最值即可.

          試題解析:

          (Ⅰ)證明: ,

          易知圓在點處的切線方程為

          由題意知, ,即,解得,

          , ,令,得,

          時, , 上單調(diào)遞減,

          時, 上單調(diào)遞增.

          因此, 處取得極小值,也為最小值,最小值為,

          ,故.

          (Ⅱ)不等式 上恒成立,

          上恒成立.

          , ,

          ,

          ①當時, 上恒成立, 上是減函數(shù),又,

          故當時,總有,符合題意;

          ②當時,令,解得

          易知上是減函數(shù),在上是增函數(shù),又

          故當時,總有,不符合題意;

          ③當時, 上恒成立, 上是減函數(shù),又,故當時,總有,符合題意.

          綜上所述,實數(shù)的取值范圍是.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】《孫子算經(jīng)》是中國古代重要的數(shù)學著作,約成書于四、五世紀,也就是大約一千五百年前,傳本的《孫子算經(jīng)》共三卷,卷中有一問題:“今有方物一束,外周一匝有三十二枚,問積幾何?”該著作中提出了一種解決問題的方法:“重置二位,左位減八,余加右位,至盡虛加一,即得.”通過對該題的研究發(fā)現(xiàn),若一束方物外周一匝的枚數(shù)是8的整數(shù)倍時,均可采用此方法求解,如圖,是解決這類問題的程序框圖,若輸入,則輸出的結果為( )

          A. 120 B. 121 C. 112 D. 113

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某班同學利用寒假進行社會實踐活動,對[25,55]歲的人群隨機抽取n人進行了一次生活習慣是否符合低碳觀念的調(diào)查,若生活習慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

          組數(shù)

          分組

          低碳族人數(shù)

          占本組的頻率

          第一組

          [25,30)

          120

          0.6

          第二組

          [30,35)

          195

          p

          第三組

          [35,40)

          100

          0.5

          第四組

          [40,45)

          a

          0.4

          第五組

          [45,50)

          30

          0.3

          第六組

          [50,55)

          15

          0.3


          (1)補全頻率分布直方圖并求n、a、p的值;
          (2)從年齡段在[40,50)的“低碳族”中采用分層抽樣法抽取6人參加戶外低碳體驗活動,其中選取2人作為領隊,求選取的2名領隊中恰有1人年齡在[40,45)歲的概率.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知等邊三角形的邊長為4,四邊形為正方形,平面平面, , , 分別是線段, , , 上的點.

          (Ⅰ)如圖①,若為線段的中點, ,證明: 平面;

          (Ⅱ)如圖②,若, 分別為線段 的中點, , ,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】解關于x的不等式:
          (1) >1;
          (2)x2﹣ax﹣2a2<0 (a為常數(shù)).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知直線y=x+b與圓x2+y2﹣2x+4y﹣4=0相交于A,B兩點,O為坐標原點,若 =0,則實數(shù)b的值為

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某公司今年年初用25萬元引進一種新的設備,投入設備后每年收益為21萬元.該公司第n年需要付出設備的維修和工人工資等費用an的信息如圖.
          (1)求an
          (2)引進這種設備后,第幾年后該公司開始獲利;
          (3)這種設備使用多少年,該公司的年平均獲利最大?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知圓C:x2+y2﹣4x﹣4y+4=0,點E(3,4).
          (1)過點E的直線l與圓交與A,B兩點,若AB=2 ,求直線l的方程;
          (2)從圓C外一點P(x1 , y1)向該圓引一條切線,切點記為M,O為坐標原點,且滿足PM=PO,求使得PM取得最小值時點P的坐標.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,有一壁畫,最高點A處離地面AO=4m,最低點B處離地面BO=2m,觀賞它的C點在過墻角O點與地面成30°角的射線上.

          (1)設點C到墻的距離為x,當x= m時,求tanθ的值;
          (2)問C點離墻多遠時,視角θ最大?

          查看答案和解析>>

          同步練習冊答案