日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)已知函數(shù)f(x)的周期為4,且等式f(2+x)=f(2-x)對一切x∈R恒成立,求證f(x)為偶函數(shù);
          (2)設(shè)奇函數(shù)f(x)的定義域為R,且f(x+4)=f(x),當x∈[4,6]時,f(x)=2x+1,求f(x)在區(qū)間[-2,0]上的表達式.
          分析:(1)把關(guān)系式f(2+x)=f(2-x)變形,結(jié)合函數(shù)的周期,可得到f(-x)與f(-x)的關(guān)系,從而可確定原函數(shù)的奇偶性
          (2)由f(x+4)=f(x),可得原函數(shù)的周期,再結(jié)合奇偶性,可把自變量的范圍[-2,0]轉(zhuǎn)化到[4,6]上,再結(jié)合奇偶性,可得所求解析式
          解答:(1)證明:∵f(2+x)=f(2-x)
          ∴f(2+(x+2))=f(2-(x+2)),即f(x+4)=f(-x)
          又∵函數(shù)f(x)的周期為4
          ∴f(x+4)=f(x)
          ∴f(-x)=f(x)
          又∵x∈R,定義域關(guān)于原點對稱
          ∴函數(shù)f(x)是偶函數(shù)
          (2)解:當x∈[-2,0]時,-x∈[0,2]
          ∴-x+4∈[4,6]
          又∵當x∈[4,6]時,f(x)=2x+1
          ∴f(-x+4)=2-x+4+1
          又∵f(x+4)=f(x)
          ∴函數(shù)f(x)的周期為T=4
          ∴f(-x+4)=f(-x)
          又∵函數(shù)f(x)是R上的奇函數(shù)
          ∴f(-x)=-f(x)
          ∴-f(x)=2-x+4+1
          ∴當x∈[-2,0]時,f(x)=-2-x+4-1
          點評:本題綜合考查函數(shù)的周期性、奇偶性,以及函數(shù)解析式的求法.要注意函數(shù)性質(zhì)的靈活轉(zhuǎn)化.屬簡單題
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          (1)已知函數(shù)f(x)=-x2+4(x∈(-1,2)),P、Q是f(x)圖象上的任意兩點.
          ①試求直線PQ的斜率kPQ的取值范圍;
          ②求f(x)圖象上任一點切線的斜率k的范圍;
          (2)由(1)你能得出什么結(jié)論?(只須寫出結(jié)論,不必證明),試運用這個結(jié)論解答下面的問題:已知集合MD是滿足下列性質(zhì)函數(shù)f(x)的全體:若函數(shù)f(x)的定義域為D,對任意的x1,x2∈D,(x1≠x2)有|f(x1)-f(x2)|<|x1-x2|.
          ①當D=(0,1)時,f(x)=lnx是否屬于MD,若屬于MD,給予證明,否則說明理由;
          ②當D=(0,
          3
          3
          )
          ,函數(shù)f(x)=x3+ax+b時,若f(x)∈MD,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (1)已知函數(shù)f(x)=lg(1+x)+lg(1-x).①求函數(shù)f(x)的定義域.②判斷函數(shù)的奇偶性,并給予證明.
          (2)已知函數(shù)f(x)=ax+3,(a>0且a≠1),求函數(shù)f(x)在[0,2]上的值域.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (1)已知函數(shù)f(x)=
          x+3(x≤0)
          2x(x>0)
          ,則f(f(-2))為
          2
          2
          ;
          (2)不等式f(x)>2的解集是
          (-1,0]∪(1,+∞)
          (-1,0]∪(1,+∞)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2006•浦東新區(qū)模擬)(1)已知函數(shù)f(x)=ax-x(a>1).
          ①若f(3)<0,試求a的取值范圍;
          ②寫出一組數(shù)a,x0(x0≠3,保留4位有效數(shù)字),使得f(x0)<0成立;
          (2)若曲線y=x+
          p
          x
          (p≠0)上存在兩個不同點關(guān)于直線y=x對稱,求實數(shù)p的取值范圍;
          (3)當0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點情況提出你的問題,并加以解決.(說明:①函數(shù)f(x)=xlnx有如下性質(zhì):在區(qū)間(0,
          1
          e
          ]
          上單調(diào)遞減,在區(qū)間[
          1
          e
          ,1)
          上單調(diào)遞增.解題過程中可以利用;②將根據(jù)提出和解決問題的不同層次區(qū)別給分.)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          給出下列四個命題:
          (1)已知函數(shù)f(x)=
          1
          2
          x2   x≤2
          log2(x+a)  x>2
          在定義域內(nèi)是連續(xù)函數(shù),數(shù)列{an}通項公式為an=
          1
          an
          ,則數(shù)列{an}的所有項之和為1.
          (2)過點P(3,3)與曲線(x-2)2-
          (y-1)2
          4
          =1有唯一公共點的直線有且只有兩條.
          (3)向量
          a
          =(x2,x+1)
          ,
          b
          =(1-x,t)
          ,若函數(shù)f(x)=
          a
          b
          在區(qū)間[-1,1]上是增函數(shù),則實數(shù)t的取值范圍是(5,+∞);
          (4)我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{2,4,6,8,10}的“孫集”有26個.
          其中正確的命題有
          (1)(2)(4)
          (1)(2)(4)
          (填序號)

          查看答案和解析>>

          同步練習冊答案