日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知對任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線.
          (I)求a的取值范圍;
          (II)求證在x∈[-1,1]上至少存在一個x,使得成立.
          【答案】分析:(I)求出f(x)導(dǎo)函數(shù)的值域,由直線x+y+m=0都不是f(x)=x3-3ax的切線得到-1不屬于導(dǎo)函數(shù)的值域,得到關(guān)于a的不等式,求出解集得到a的取值范圍即可;
          (II)要證的問題等價于當(dāng)x∈[-1,1]時,,設(shè)g(x)=|f(x)|,g(x)在x∈[-1,1]上是偶函數(shù),故只要證明當(dāng)x∈[0,1]時,,分a小于等于0和a大于0小于兩種情況,討論f'(x)的正負(fù)化簡絕對值并得到函數(shù)的增減區(qū)間,根據(jù)函數(shù)的增減性分別求出|f(x)|的最小值比大得證.
          解答:解:(I)f'(x)=3x2-3a∈[-3a,+∞),
          ∵對任意m∈R,直線x+y+m=0都不是y=f(x)的切線,
          ∴-1∉[-3a,+∞),-1<-3a,實數(shù)a的取值范圍是;
          (II)證明:在x∈[-1,1]上至少存在一個x,使得成立等價于當(dāng)x∈[-1,1]時,,
          設(shè)g(x)=|f(x)|,g(x)在x∈[-1,1]上是偶函數(shù),故只要證明當(dāng)x∈[0,1]時,,
          ①當(dāng)a≤0時,f'(x)≥0,f(x)在[0,1]上單調(diào)遞增且f(0)=0,g(x)=f(x),
          ②當(dāng),,列表:

          f(x)在上遞減,在上遞增,

          時,g(x)=-f(x),時,g(x)=f(x),
          ,
          ,即,則
          ,即,則;
          ∴在x∈[-1,1]上至少存在一個x,使得成立.
          點評:此題是一道綜合題,要求學(xué)生會利用導(dǎo)數(shù)求曲線上某點切線方程的斜率,掌握不等式恒成立時所取的條件以及導(dǎo)數(shù)在最值問題中的應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知對任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線.
          (I)求a的取值范圍;
          (II)求證在x∈[-1,1]上至少存在一個x0,使得|f(x0)|≥
          14
          成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知對任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線,則a的取值范圍是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知對任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線.
          (I)求a的取值范圍;
          (II)求證在x∈[-1,1]上至少存在一個x0,使得數(shù)學(xué)公式成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年遼寧省丹東市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

          已知對任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線.
          (I)求a的取值范圍;
          (II)求證在x∈[-1,1]上至少存在一個x,使得成立.

          查看答案和解析>>

          同步練習(xí)冊答案