日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線上一點到焦點的距離為,過作兩條互相垂直的直線,其中斜率為與拋物線交于AB,y軸交于C,點Q滿足:

          (1)求拋物線的方程;

          (2)求三角形PQC面積的最小值.

          【答案】(1); (2)

          【解析】

          (1)根據(jù)拋物線定義,到焦點的距離等于到其準(zhǔn)線的距離,求得拋物線方程;

          (2)應(yīng)用設(shè)而不解,聯(lián)立方程組,根與系數(shù)的關(guān)系,以及向量式,將點的縱坐標(biāo)均用表示出來,再表示出,從而表示出三角形的面積,再求最值.

          解:(1)拋物線化為標(biāo)準(zhǔn)方程為:,其準(zhǔn)線為,

          ,得,故拋物線的方程為.

          (2)由題,,則

          設(shè),則,得,

          .

          ,,,

          ,,,

          ,

          ,,,

          ,

          , ,

          遞減,在遞增,

          故當(dāng)時,的最小值為,

          故三角形PQC面積的最小值為

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下面給出有關(guān)的四個論斷:①;②;③;④.以其中的三個論斷作為條件,余下的一個論斷作為結(jié)論,寫出一個正確的命題:若______,則_______(用序號表示)并給出證明過程:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下表為年至年某百貨零售企業(yè)的線下銷售額(單位:萬元),其中年份代碼年份

          年份代碼

          線下銷售額

          (1)已知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測年該百貨零售企業(yè)的線下銷售額;

          (2)隨著網(wǎng)絡(luò)購物的飛速發(fā)展,有不少顧客對該百貨零售企業(yè)的線下銷售額持續(xù)增長表示懷疑,某調(diào)查平臺為了解顧客對該百貨零售企業(yè)的線下銷售額持續(xù)增長的看法,隨機調(diào)查了位男顧客、位女顧客(每位顧客從“持樂觀態(tài)度”和“持不樂觀態(tài)度”中任選一種),其中對該百貨零售企業(yè)的線下銷售額持續(xù)增長持樂觀態(tài)度的男顧客有人、女顧客有人,能否在犯錯誤的概率不超過的前提下認為對該百貨零售企業(yè)的線下銷售額持續(xù)增長所持的態(tài)度與性別有關(guān)?

          參考公式及數(shù)據(jù):

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓Γ的左,右焦點分別為F1(,0),F2(,0),橢圓的左,右頂點分別為A,B,已知橢圓Γ上一異于AB的點P,PAPB的斜率分別為k1,k2,滿足.

          1)求橢圓Γ的標(biāo)準(zhǔn)方程;

          2)若過橢圓Γ左頂點A作兩條互相垂直的直線AMAN,分別交橢圓ΓM,N兩點,問x軸上是否存在一定點Q,使得MQA=∠NQA成立,若存在,則求出該定點Q,否則說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某化工廠引進一條先進生產(chǎn)線生產(chǎn)某種化工產(chǎn)品,其生產(chǎn)的總成本(萬元)與年產(chǎn)量(噸)之間的函數(shù)關(guān)系式可以近似的表示為,已知此生產(chǎn)線年產(chǎn)量最大為噸.

          1)求年產(chǎn)量為多少噸時,生產(chǎn)每噸產(chǎn)品的平均成本最低,并求最低成本;

          2)若每噸產(chǎn)品平均出廠價為40萬元,那么當(dāng)年產(chǎn)量為多少噸時,可以獲得最大利潤?最大利潤是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知四棱錐,底面為正方形,且底面的平面與側(cè)面的交線為,且滿足表示的面積.

          (1)證明: 平面

          (2)當(dāng)時,二面角的余弦值為,的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的頂點在坐標(biāo)原點,準(zhǔn)線方程為,為拋物線的焦點,點為直線上任意一點,以為圓心,為半徑的圓與拋物線的準(zhǔn)線交于兩點,過分別作準(zhǔn)線的垂線交拋物線于點、.

          1)求拋物線的方程;

          2)證明:直線過定點,并求出定點的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一款小游戲的規(guī)則如下:每輪游戲要進行三次,每次游戲都需要從裝有大小相同的2個紅球,3個白球的袋中隨機摸出2個球,若摸出的兩個都是紅球出現(xiàn)3次獲得200分,若摸出兩個都是紅球出現(xiàn)1次或2次獲得20分,若摸出兩個都是紅球出現(xiàn)0次則扣除10分(即獲得分).

          1)設(shè)每輪游戲中出現(xiàn)摸出兩個都是紅球的次數(shù)為,求的分布列;

          2)玩過這款游戲的許多人發(fā)現(xiàn),若干輪游戲后,與最初的分數(shù)相比,分數(shù)沒有增加反而減少了,請運用概率統(tǒng)計的相關(guān)知識分析解釋上述現(xiàn)象.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知項數(shù)為的數(shù)列滿足如下條件:①;②若數(shù)列滿足其中則稱的“伴隨數(shù)列”.

          I)數(shù)列是否存在“伴隨數(shù)列”,若存在,寫出其“伴隨數(shù)列”;若不存在,請說明理由;

          II)若的“伴隨數(shù)列”,證明:;

          III)已知數(shù)列存在“伴隨數(shù)列”的最大值.

          查看答案和解析>>

          同步練習(xí)冊答案