日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 探究函數(shù)f(x)=x2+
          2
          x
          (x>0)
          的最小值,并確定取得最小值時x的值.列表如下,請觀察表中y值隨x值變化的特點,完成以下的問題.
          x 0.25 0.5 0.75 1 1.1 1.2 1.5 2 3 5
          y 8.063 4.25 3.229 3 3.028 3.081 3.583 5 9.667 25.4
          已知:函數(shù)f(x)=x2+
          2
          x
          (x>0)
          在區(qū)間(0,1)上遞減,問:
          (1)函數(shù)f(x)=x2+
          2
          x
          (x>0)
          在區(qū)間
          [1,+∞)
          [1,+∞)
          上遞增.當(dāng)x=
          1
          1
          時,y最小=
          3
          3

          (2)函數(shù)g(x)=9x2+
          2
          3|x|
          在定義域內(nèi)有最大值或最小值嗎?如有,是多少?此時x為何值?(直接回答結(jié)果,不需證明)
          分析:(1)由表中數(shù)據(jù)可推測函數(shù)f(x)在區(qū)間[1,+∞)上遞增,從而當(dāng)x=1 時,y最小=3,證明此結(jié)論可利用導(dǎo)數(shù)或均值定理;
          (2)利用換元法,設(shè)t=|3x|,將函數(shù)g(x)轉(zhuǎn)化為函數(shù)f(t),利用(1)中的結(jié)論求最值即可
          解答:解:(1)由表中數(shù)據(jù)可知:函數(shù)f(x)=x2+
          2
          x
          (x>0)
          在區(qū)間[1,+∞)上遞增.
          當(dāng)x=1 時,y最小=3.
          故答案為[1,+∞),1,3
          (2)由函數(shù)g(x)=9x2+
          2
          3|x|
          =(3x)2+
          2
          |3x|
          =t2+
          2
          t
          ,(令t=|3x|),
          由(1)知函數(shù)g(x)有最小值3,
          又因為g(-x)=g(x),所以g(x)是偶函數(shù),
          所以函數(shù)g(x)取得最小值時t=3|x|=1,即x=±
          1
          3
          點評:本題主要考查了利用列表法研究函數(shù)性質(zhì)的方法,利用換元法求函數(shù)最值的方法,轉(zhuǎn)化化歸的思想方法
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          探究函數(shù)f(x)=x+
          4
          x
          ,x∈(0,+∞)
          的最小值,并確定取得最小值時x的值.列表如下:
          x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
          y 8.5 5 4.17 4.05 4.005 4 4.005 4.002 4.04 4.3 5 5.8 7.57
          請觀察表中y值隨x值變化的特點,完成以下的問題.
          (1)函數(shù)f(x)=x+
          4
          x
          (x>0)
          在區(qū)間(0,2)上遞減,函數(shù)f(x)=x+
          4
          x
          (x>0)
          在區(qū)間
           
          上遞增;
          (2)函數(shù)f(x)=x+
          4
          x
          (x>0)
          ,當(dāng)x=
           
          時,y最小=
           
          ;
          (3)函數(shù)f(x)=x+
          4
          x
          (x<0)
          時,有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結(jié)果,不需證明)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          探究函數(shù)f(x)=x+
          4
          x
            x∈(0,+∞)的最小值,并確定相應(yīng)的x的值,列表如下,請觀察表中y值隨x值變化的特點,完成下列問題:
          x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
          y 8.5 5 4.17 4.05 4.005 4 4.005 4.102 4.24 4.3 5 5.8 7.57
          (1)若當(dāng)x>0時,函數(shù)f(x)=x+
          4
          x
          時,在區(qū)間(0,2)上遞減,則在
           
          上遞增;
          (2)當(dāng)x=
           
          時,f(x)=x+
          4
          x
          ,x>0的最小值為
           

          (3)試用定義證明f(x)=x+
          4
          x
          ,x>0在區(qū)間上(0,2)遞減;
          (4)函數(shù)f(x)=x+
          4
          x
          ,x<0有最值嗎?是最大值還是最小值?此時x為何值?
          解題說明:(1)(2)兩題的結(jié)果直接填寫在答題卷中橫線上;(4)題直接回答,不需證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          觀察下列表格,探究函數(shù)f(x)=x+
          4
          x
          ,x∈(0,+∞)
          的性質(zhì),
          x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
          y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
          (1)請觀察表中y值隨x值變化的特點,完成以下的問題.
          函數(shù)f(x)=x+
          4
          x
          (x>0)
          在區(qū)間(0,2)上遞減;
          函數(shù)f(x)=x+
          4
          x
          (x>0)
          在區(qū)間
          (2,+∞)
          (2,+∞)
          上遞增.
          當(dāng)x=
          2
          2
          時,y最小=
          4
          4

          (2)證明:函數(shù)f(x)=x+
          4
          x
          在區(qū)間(0,2)遞減.
          (3)函數(shù)f(x)=x+
          4
          x
          (x<0)
          時,有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結(jié)果,不需證明)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
          (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案