日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,在多面體ABCDEF中,四邊形ABCD是正方形,F(xiàn)A⊥平面ABCD,EF∥BC,F(xiàn)A=2,AD=3,∠ADE=45°,點(diǎn)G是FA的中點(diǎn).
          (1)求證:EG⊥平面CDE;
          (2)求二面角B-CE-G的余弦值.
          分析:(1)由正方形的性質(zhì),及FA⊥平面ABCD,可得AF⊥CD,CD⊥AD,結(jié)合線面垂直的判定定理得到CD⊥平面ADEF,則CD⊥EG,由FA=2,AD=3,∠ADE=45°,可證得EG⊥DE,進(jìn)而再由線面垂直的判定定理得到EG⊥平面CDE;
          (2)以AB、AD、AF為x、y、z軸建立空間直角坐標(biāo)系,分別求出平面BDE與平面CEG的法向量,代入向量夾角公式即可得到答案.
          解答:精英家教網(wǎng)證明:(1)∵EF∥BC,AD∥BC,∴EF∥AD.
          在四邊形ADEF中,由FA=2,AD=3,∠ADE=45°,可證得EG⊥DE,
          又由FA⊥平面ABCD,得AF⊥CD,
          ∵正方形ABCD中CD⊥AD,∴CD⊥平面ADEF,
          ∵EG?平面ADEF,∴CD⊥EG,
          ∵CD∩DE=D,∴EG⊥平面CDE;…(6分)
          (2)以AB、AD、AF為x、y、z軸建立空間直角坐標(biāo)系,
          則B(3,0,0)、C(3,3,0)、E(0,1,2)、G(0,1,1).
          BC
          =(0,3,0)
          、
          EC
          =(3,2,-2)
          GF
          =(0,1,1)
          ,
          分別求得平面BCE與平面CEG的一個(gè)法向量
          m
          =(2,0,3)
          ,
          n
          =(4,-3,3)
          ,
          向量
          m
          n
          的夾角的余弦值為
          8+9
          442
          =
          442
          26

          ∴二面角B-CE-G的余弦值為
          442
          26
          點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是二面角的平面角及求法,直線與平面垂直的判定,其中(1)的關(guān)鍵,是證得CD⊥EG,EG⊥DE,(2)的關(guān)鍵是建立空間坐標(biāo)系,將二面角問題轉(zhuǎn)化為向量夾角問題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在多面體ABC-A1B1C1中,AA1⊥平面ABC,AA1
          .
          BB1,AB=AC=AA1=
          2
          2
          BC,B1C1
          .
          1
          2
          BC

          (1)求證:A1B1⊥平面AA1C;
          (2)求證:AB1∥平面A1C1C;
          (3)求二面角C1-A1C-A的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
          2
          AB
          ,B1C1
          .
          .
          1
          2
          BC
          ,二面角A1-AB-C是直二面角.
          (Ⅰ)求證:AB1∥平面 A1C1C;
          (Ⅱ)求BC與平面A1C1C所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•青島二模)如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
          12
          BC.
          (Ⅰ)求證:面A1AC⊥面ABC;
          (Ⅱ)求證:AB1∥面A1C1C.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•合肥一模)如圖,在多面體ABC-A1B1C1中,AA1⊥平面ABC,AA1⊥平面ABC,AA1∥=BB1,AB=AC=AA1=
          2
          2
          BC
          ,B1C1∥=
          1
          2
          BC

          (1)求證:A1B1⊥平面AA1C;
          (2)若D是BC的中點(diǎn),求證:B1D∥平面A1C1C;
          (3)若BC=2,求幾何體ABC-A1B1C1的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•鄭州二模)如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
          2
          AB,B1C1
          .
          1
          2
          BC
          ,二面角A1-AB-C是直二面角.
          (I)求證:A1B1⊥平面AA1C; 
          (II)求證:AB1∥平面 A1C1C;
          (II)求BC與平面A1C1C所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案