日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知平面上動(dòng)點(diǎn)M到定點(diǎn)F(0,2)的距離比M到直線y=-4的距離小2,則動(dòng)點(diǎn)M滿足的方程為   
          【答案】分析:由題意,平面上動(dòng)點(diǎn)M到定點(diǎn)F(0,2)的距離等于M到直線y=-2的距離,利用拋物線的定義可得結(jié)論.
          解答:解:∵平面上動(dòng)點(diǎn)M到定點(diǎn)F(0,2)的距離比M到直線y=-4的距離小2,
          ∴平面上動(dòng)點(diǎn)M到定點(diǎn)F(0,2)的距離等于M到直線y=-2的距離,
          ∴動(dòng)點(diǎn)M的軌跡是以定點(diǎn)F(0,2)為焦點(diǎn),以y=-2為準(zhǔn)線的拋物線
          ∴動(dòng)點(diǎn)M的軌跡方程為x2=8y
          故答案為:x2=8y
          點(diǎn)評(píng):本題考查軌跡方程,考查拋物線的定義,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知平面上的動(dòng)點(diǎn)Q到定點(diǎn)F(0,1)的距離與它到定直線y=3的距離相等.
          (1)求動(dòng)點(diǎn)Q的軌跡C1的方程;
          (2)過點(diǎn)F作直線l1交C2:x2=4y于A,B兩點(diǎn)(B在第一象限).若|BF|=2|AF|,求直線l1的方程.
          (3)試問在曲線C1上是否存在一點(diǎn)M,過點(diǎn)M作曲線C1的切線l2交拋物線C2于D,E兩點(diǎn),使得DF⊥EF?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知平面上的動(dòng)點(diǎn)P(x,y)及兩定點(diǎn)A(-2,0),B(2,0),直線PA,PB的斜率分別是 k1,k2k1k2=-
          1
          4

          (1)求動(dòng)點(diǎn)P的軌跡C的方程;
          (2)設(shè)直線l:y=kx+m與曲線C交于不同的兩點(diǎn)M,N.
          ①若OM⊥ON(O為坐標(biāo)原點(diǎn)),證明點(diǎn)O到直線l的距離為定值,并求出這個(gè)定值
          ②若直線BM,BN的斜率都存在并滿足kBMkBN=-
          1
          4
          ,證明直線l過定點(diǎn),并求出這個(gè)定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•汕頭二模)已知平面內(nèi)一動(dòng)點(diǎn) P到定點(diǎn)F(0,
          1
          2
          )
          的距離等于它到定直線y=-
          1
          2
          的距離,又已知點(diǎn) O(0,0),M(0,1).
          (1)求動(dòng)點(diǎn) P的軌跡C的方程;
          (2)當(dāng)點(diǎn) P(x0,y0)(x0≠0)在(1)中的軌跡C上運(yùn)動(dòng)時(shí),以 M P為直徑作圓,求該圓截直線y=
          1
          2
          所得的弦長(zhǎng);
          (3)當(dāng)點(diǎn) P(x0,y0)(x0≠0)在(1)中的軌跡C上運(yùn)動(dòng)時(shí),過點(diǎn) P作x軸的垂線交x軸于點(diǎn) A,過點(diǎn) P作(1)中的軌跡C的切線l交x軸于點(diǎn) B,問:是否總有 P B平分∠A PF?如果有,請(qǐng)給予證明;如果沒有,請(qǐng)舉出反例.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:汕頭二模 題型:解答題

          已知平面內(nèi)一動(dòng)點(diǎn) P到定點(diǎn)F(0,
          1
          2
          )
          的距離等于它到定直線y=-
          1
          2
          的距離,又已知點(diǎn) O(0,0),M(0,1).
          (1)求動(dòng)點(diǎn) P的軌跡C的方程;
          (2)當(dāng)點(diǎn) P(x0,y0)(x0≠0)在(1)中的軌跡C上運(yùn)動(dòng)時(shí),以 M P為直徑作圓,求該圓截直線y=
          1
          2
          所得的弦長(zhǎng);
          (3)當(dāng)點(diǎn) P(x0,y0)(x0≠0)在(1)中的軌跡C上運(yùn)動(dòng)時(shí),過點(diǎn) P作x軸的垂線交x軸于點(diǎn) A,過點(diǎn) P作(1)中的軌跡C的切線l交x軸于點(diǎn) B,問:是否總有 P B平分∠A PF?如果有,請(qǐng)給予證明;如果沒有,請(qǐng)舉出反例.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年廣東省汕頭市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

          已知平面內(nèi)一動(dòng)點(diǎn) P到定點(diǎn)的距離等于它到定直線的距離,又已知點(diǎn) O(0,0),M(0,1).
          (1)求動(dòng)點(diǎn) P的軌跡C的方程;
          (2)當(dāng)點(diǎn) P(x,y)(x≠0)在(1)中的軌跡C上運(yùn)動(dòng)時(shí),以 M P為直徑作圓,求該圓截直線所得的弦長(zhǎng);
          (3)當(dāng)點(diǎn) P(x,y)(x≠0)在(1)中的軌跡C上運(yùn)動(dòng)時(shí),過點(diǎn) P作x軸的垂線交x軸于點(diǎn) A,過點(diǎn) P作(1)中的軌跡C的切線l交x軸于點(diǎn) B,問:是否總有 P B平分∠A PF?如果有,請(qǐng)給予證明;如果沒有,請(qǐng)舉出反例.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案