日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).若不等式恒成立,則的最小值為_______.

          【答案】

          【解析】

          求出,可得當(dāng)時(shí),, 上為增函數(shù),

          從而是不可能恒成立的.,當(dāng)時(shí),由,得,此時(shí)函數(shù)單調(diào)遞增,由,得,此時(shí)函數(shù)單調(diào)遞減,可得出函數(shù)的最大值,從而得到,設(shè),然后求導(dǎo)得出函數(shù)的最小值即可.

          函數(shù),其中為自然對數(shù)的底數(shù)

          ,

          當(dāng)時(shí),, 上為增函數(shù),

          又當(dāng) 時(shí),所以是不可能恒成立的.

          當(dāng)時(shí),由,得,此時(shí)函數(shù)單調(diào)遞增.

          ,得,此時(shí)函數(shù)單調(diào)遞減.

          所以

          由不等式恒成立,即恒成立.

          恒成立,

          所以

          設(shè),則

          設(shè),則

          得, ,此時(shí)函數(shù)單調(diào)遞增,

          得, ,此時(shí)函數(shù)單調(diào)遞減,

          所以

          又當(dāng)時(shí),,當(dāng)時(shí),.

          所以當(dāng) 時(shí),,單調(diào)遞減.

          當(dāng) 時(shí),,單調(diào)遞增.

          所以

          所以的最小值為:.

          故答案為:.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的焦點(diǎn)為,拋物線上存在一點(diǎn) 到焦點(diǎn)的距離等于

          (1)求拋物線的方程;

          (2)已知點(diǎn)在拋物線上且異于原點(diǎn),點(diǎn)為直線上的點(diǎn),且.求直線與拋物線的交點(diǎn)個(gè)數(shù),并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在數(shù)列中,已知.

          1)求數(shù)列的通項(xiàng)公式;

          2)求證:數(shù)列是等差數(shù)列;

          3)設(shè)數(shù)列滿足的前項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】我國南宋時(shí)期著名的數(shù)學(xué)家秦九韶在其著作《數(shù)書九章》中,提出了已知三角形三邊長求三角形的面積的公式,與著名的海倫公式完全等價(jià),由此可以看出我國古代已具有很高的數(shù)學(xué)水平,其求法是:以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隔,開平方得積.若把以上這段文字寫成公式,即,其中a、bc分別為內(nèi)角A、BC的對邊.,,則面積S的最大值為

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)直線的方程為.

          (1)求證:不論為何值,直線必過一定點(diǎn);

          (2)若直線分別與軸正半軸,軸正半軸交于點(diǎn),當(dāng)而積最小時(shí),求的周長;

          (3)當(dāng)直線在兩坐標(biāo)軸上的截距均為整數(shù)時(shí),求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)).

          (1)的導(dǎo)函數(shù),討論的零點(diǎn)個(gè)數(shù);

          (2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對于回歸分析,下列說法錯誤的是(

          A.在殘差圖中,縱坐標(biāo)表示殘差

          B.若散點(diǎn)圖中的一組點(diǎn)全部位于直線的圖象上,則相關(guān)系數(shù)

          C.若殘差平方和越小,則相關(guān)指數(shù)越大

          D.在回歸分析中,變量間的關(guān)系若是非確定關(guān)系,那么因變量不能由自變量唯一確定

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】有一段“三段論”,其推理是這樣的:對于可導(dǎo)函數(shù),若,則是函數(shù)的極值點(diǎn),因?yàn)楹瘮?shù)滿足,所以是函數(shù)的極值點(diǎn)”,結(jié)論以上推理  

          A. 大前提錯誤B. 小前提錯誤C. 推理形式錯誤D. 沒有錯誤

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓 C:的離心率為,以短軸為直徑的圓被直線 x+y-1 = 0 截得的弦長為

          (1) 求橢圓 C 的方程;

          (2) 設(shè) A, B 分別為橢圓的左、右頂點(diǎn), D 為橢圓右準(zhǔn)線 l x 軸的交點(diǎn), E l上的另一個(gè)點(diǎn),直線 EB 與橢圓交于另一點(diǎn)F,是否存在點(diǎn) E,使 R)? 若存在,求出點(diǎn) E 的坐標(biāo);若不存在,請說明理由

          查看答案和解析>>

          同步練習(xí)冊答案