日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù),則實(shí)數(shù)等于

          A.               B.              C.2           D.9

           

          【答案】

          C

          【解析】略

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          對于定義在集合D上的函數(shù)y=f(x),若f(x)在D上具有單調(diào)性,且存在區(qū)間[a,b]⊆D(其中a<b),使當(dāng)x∈[a,b]時(shí),
          f(x)的值域是[a,b],則稱函數(shù)f(x)是D上的正函數(shù),區(qū)間[a,b]稱為f(x)的“等域區(qū)間”.
          (1)已知函數(shù)f(x)=
          x
          是[0,+∞)上的正函數(shù),試求f(x)的等域區(qū)間.
          (2)試探究是否存在實(shí)數(shù)k,使函數(shù)g(x)=x2+k是(-∞,0)上的正函數(shù)?若存在,求出k的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
          (1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
          (2)證明:對任意實(shí)數(shù)0<x1<x2<1,關(guān)于x的方程:f′(x)-
          f(x2)-f(x1)
          x2-x1
          =0
          在(x1,x2)恒有實(shí)數(shù)解
          (3)結(jié)合(2)的結(jié)論,其實(shí)我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點(diǎn)x0,使得f′(x0)=
          f(b)-f(a)
          b-a
          .如我們所學(xué)過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理?xiàng)l件.試用拉格朗日中值定理證明:
          當(dāng)0<a<b時(shí),
          b-a
          b
          <ln
          b
          a
          b-a
          a
          (可不用證明函數(shù)的連續(xù)性和可導(dǎo)性).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          對于定義在集合D上的函數(shù)y=f(x),若f(x)在D上具有單調(diào)性且存在區(qū)間[a,b]⊆D(其中a<b)使當(dāng)x∈[a,b]時(shí),f(x)的值域是[a,b],則稱函數(shù)f(x)是D上的“正函數(shù)”,區(qū)間[a,b]稱為f(x)的“等域區(qū)間”.
          (1)已知函數(shù)f(x)=x3是正函數(shù),試求f(x)的所有等域區(qū)間;
          (2)若g(x)=
          x+2
          +k
          是正函數(shù),試求實(shí)數(shù)k的取值范圍;
          (3)是否存在實(shí)數(shù)a,b(a<b<1)使得函數(shù)f(x)=|1-
          1
          x
          |
          是[a,b]上的“正函數(shù)”?若存在,求出區(qū)間[a,b],若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
          (1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
          (2)證明:對任意實(shí)數(shù)0<x1<x2<1,關(guān)于x的方程:數(shù)學(xué)公式在(x1,x2)恒有實(shí)數(shù)解
          (3)結(jié)合(2)的結(jié)論,其實(shí)我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點(diǎn)x0,使得數(shù)學(xué)公式.如我們所學(xué)過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理?xiàng)l件.試用拉格朗日中值定理證明:
          當(dāng)0<a<b時(shí),數(shù)學(xué)公式(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年廣東省廣州六中高三(上)9月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
          (1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
          (2)證明:對任意實(shí)數(shù)0<x1<x2<1,關(guān)于x的方程:在(x1,x2)恒有實(shí)數(shù)解
          (3)結(jié)合(2)的結(jié)論,其實(shí)我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點(diǎn)x,使得.如我們所學(xué)過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理?xiàng)l件.試用拉格朗日中值定理證明:
          當(dāng)0<a<b時(shí),(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性).

          查看答案和解析>>

          同步練習(xí)冊答案