日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】劉徽(約公元 225 —295 年)是魏晉時期偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一,他的杰作《九章算術(shù)注》和《海島算經(jīng)》是中國寶貴的古代數(shù)學(xué)遺產(chǎn). 《九章算術(shù)·商功》中有這樣一段話:斜解立方,得兩壍堵. 斜解壍堵,其一為陽馬,一為鱉臑.” 劉徽注:此術(shù)臑者,背節(jié)也,或曰半陽馬,其形有似鱉肘,故以名云.” 其實這里所謂的鱉臑(biē nào,就是在對長方體進(jìn)行分割時所產(chǎn)生的四個面都為直角三角形的三棱錐. 如圖,在三棱錐中, 垂直于平面, 垂直于,且 ,則三棱錐的外接球的球面面積為__________.

          【答案】

          【解析】由條件知道垂直于平面, 垂直于,故AB垂直于,從而得到垂直于面ABC,故三角形ABD和三角形ACD都是直角三角形,則外接球球心在AD的中點上,記作O點,

          表面積是

          故結(jié)果為:

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)有4個零點,其圖象如下圖,和圖象吻合的函數(shù)解析式是( )

          A. B.

          C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將函數(shù)y=sin2x的圖象向左平移 個單位長度,所得函數(shù)是(
          A.奇函數(shù)
          B.偶函數(shù)
          C.既是奇函數(shù)又是偶函數(shù)
          D.既不是奇函數(shù)也不是偶函數(shù)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓 的左、右焦點分別為F1、F2 , 短軸兩個端點為A、B,且四邊形F1AF2B是邊長為2的正方形.

          (1)求橢圓的方程;
          (2)若C、D分別是橢圓長的左、右端點,動點M滿足MD⊥CD,連接CM,交橢圓于點P.證明: 為定值.
          (3)在(2)的條件下,試問x軸上是否存異于點C的定點Q,使得以MP為直徑的圓恒過直線DP、MQ的交點,若存在,求出點Q的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在三棱錐中, 是邊長為的等邊三角形, , 分別是的中點.

          (1)求證: 平面;

          (2)求證: 平面;

          (3)求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)若時取到極值,求的值及的圖象在處的切線方程;

          (2)若時恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知集合A={x|3≤3x≤27},
          (1)分別求A∩B,(RB)∪A;
          (2)已知集合C={x|1<x<a},若CA,求實數(shù)a的取值集合.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某種產(chǎn)品的廣告費支出x(單位:萬元)與銷售額y(單位:萬元)之間有如表對應(yīng)數(shù)據(jù):

          x

          2

          4

          5

          6

          8

          y

          30

          40

          60

          50

          70


          (1)求回歸直線方程;
          附:回歸直線的斜率和截距的最小二乘估計公式分別為:
          (2)試預(yù)測廣告費支出為10萬元時,銷售額多大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在邊長為4的菱形中,,現(xiàn)沿對角線折起,折起后使的余弦值為

          (1)求證:平面平面

          (2)若的中點,求三棱錐的體積

          查看答案和解析>>

          同步練習(xí)冊答案